Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation-expansion-microexplosion mechanism

被引:102
作者
Huang, Hui [1 ]
Xia, Yang [1 ]
Tao, Xinyong [1 ]
Du, Jun [1 ]
Fang, Junwu [1 ]
Gan, Yongping [1 ]
Zhang, Wenkui [1 ]
机构
[1] Zhejiang Univ Technol, Coll Chem Engn & Mat Sci, Hangzhou 310014, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON NANOTUBES; OXIDE; NANOPARTICLES; FABRICATION; ELECTRODES; NANOSHEETS; REDUCTION; SALTS; FILMS;
D O I
10.1039/c2jm00092j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this communication, we report a facile and novel molten salt electrolysis method to prepare high-quality graphene sheets. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) confirmed that the final products exfoliated from the electrolysis of graphite cathode in the molten LiOH medium are mainly graphene sheets (approx. 80 wt% conversion efficiency). Raman spectroscopy revealed that the as-formed graphene sheets have significantly low density of defects. Based on these observations, the exfoliation mechanism of graphite cathode into graphene sheets through lithium intercalation-expansion-microexplosion processes was proposed. The discovery of a molten salt electrolysis method presents us with the possibility for large scale and continuous production of graphene.
引用
收藏
页码:10452 / 10456
页数:5
相关论文
共 39 条
[1]   Preparation of Novel 3D Graphene Networks for Supercapacitor Applications [J].
Cao, Xiehong ;
Shi, Yumeng ;
Shi, Wenhui ;
Lu, Gang ;
Huang, Xiao ;
Yan, Qingyu ;
Zhang, Qichun ;
Zhang, Hua .
SMALL, 2011, 7 (22) :3163-3168
[2]   Electrolytic conversion of graphite to carbon nanotubes in fused salts [J].
Chen, GZ ;
Fan, XD ;
Luget, A ;
Shaffer, MSP ;
Fray, DJ ;
Windle, AH .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1998, 446 (1-2) :1-6
[3]   Substrate-free gas-phase synthesis of graphene sheets [J].
Dato, Albert ;
Radmilovic, Velimir ;
Lee, Zonghoon ;
Phillips, Jonathan ;
Frenklach, Michael .
NANO LETTERS, 2008, 8 (07) :2012-2016
[4]   Versatile Catalytic System for the Large-Scale and Controlled Synthesis of Single-Wall, Double-Wall, Multi-Wall, and Graphene Carbon Nanostructures [J].
Dervishi, Enkeleda ;
Li, Zhongrui ;
Watanabe, Fumiya ;
Courte, Aurelie ;
Biswas, Abhijit ;
Biris, Alexandru R. ;
Saini, Viney ;
Xu, Yang ;
Biris, Alexandru S. .
CHEMISTRY OF MATERIALS, 2009, 21 (22) :5491-5498
[5]   Practical Chemical Sensors from Chemically Derived Graphene [J].
Fowler, Jesse D. ;
Allen, Matthew J. ;
Tung, Vincent C. ;
Yang, Yang ;
Kaner, Richard B. ;
Weiller, Bruce H. .
ACS NANO, 2009, 3 (02) :301-306
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   Transparent, Flexible, All-Reduced Graphene Oxide Thin Film Transistors [J].
He, Qiyuan ;
Wu, Shixin ;
Gao, Shuang ;
Cao, Xiehong ;
Yin, Zongyou ;
Li, Hai ;
Chen, Peng ;
Zhang, Hua .
ACS NANO, 2011, 5 (06) :5038-5044
[8]   Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications [J].
He, Qiyuan ;
Sudibya, Herry Gunadi ;
Yin, Zongyou ;
Wu, Shixin ;
Li, Hai ;
Boey, Freddy ;
Huang, Wei ;
Chen, Peng ;
Zhang, Hua .
ACS NANO, 2010, 4 (06) :3201-3208
[9]   CONDENSED-PHASE NANOTUBES [J].
HSU, WK ;
HARE, JP ;
TERRONES, M ;
KROTO, HW ;
WALTON, DRM ;
HARRIS, PJF .
NATURE, 1995, 377 (6551) :687-687
[10]  
Huang H, 2003, CHIN J CHEM PHYS, V16, P131