共 50 条
Fundamental group of uniquely ergodic Cantor minimal systems
被引:2
作者:
Nawata, Norio
[1
]
机构:
[1] Kyushu Univ, Inst Ind Mat, Fukuoka 8190395, Japan
关键词:
Fundamental group;
Orbit equivalence;
Brown's Lemma;
EQUIVALENCE-RELATIONS;
ORBIT EQUIVALENCE;
II1;
FACTORS;
MALLEABLE ACTIONS;
COHOMOLOGY;
HOMEOMORPHISMS;
ALGEBRAS;
RINGS;
D O I:
10.1016/j.aim.2012.02.021
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We introduce the fundamental group F(R-G,R-phi) of a uniquely ergodic Cantor minimal G-system R-G,R- (phi) where G is a countable discrete group. We compute fundamental groups of several uniquely ergodic Cantor minimal G-systems. We show that if R-G,R-phi arises from a free action phi of a finitely generated abelian group, then there exists a unital countable subring R of R such that T(R-G,R-phi) = R-+(x). We also consider the relation between fundamental groups of uniquely ergodic Cantor minimal Z(n)-systems and fundamental groups of crossed product C*-algebras C(X) x(phi) Z(n). (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:746 / 758
页数:13
相关论文
共 50 条