Fundamental group of uniquely ergodic Cantor minimal systems

被引:2
|
作者
Nawata, Norio [1 ]
机构
[1] Kyushu Univ, Inst Ind Mat, Fukuoka 8190395, Japan
关键词
Fundamental group; Orbit equivalence; Brown's Lemma; EQUIVALENCE-RELATIONS; ORBIT EQUIVALENCE; II1; FACTORS; MALLEABLE ACTIONS; COHOMOLOGY; HOMEOMORPHISMS; ALGEBRAS; RINGS;
D O I
10.1016/j.aim.2012.02.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the fundamental group F(R-G,R-phi) of a uniquely ergodic Cantor minimal G-system R-G,R- (phi) where G is a countable discrete group. We compute fundamental groups of several uniquely ergodic Cantor minimal G-systems. We show that if R-G,R-phi arises from a free action phi of a finitely generated abelian group, then there exists a unital countable subring R of R such that T(R-G,R-phi) = R-+(x). We also consider the relation between fundamental groups of uniquely ergodic Cantor minimal Z(n)-systems and fundamental groups of crossed product C*-algebras C(X) x(phi) Z(n). (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:746 / 758
页数:13
相关论文
共 50 条