共 50 条
Antifouling Photograftable Zwitterionic Coatings on PDMS Substrates
被引:85
|作者:
Leigh, Braden L.
[1
]
Cheng, Elise
[2
]
Xu, Linjing
[2
]
Derk, Alexis
[1
]
Hansen, Marlan R.
[2
,3
]
Guymon, C. Allan
[1
]
机构:
[1] Univ Iowa, Dept Chem & Biochem Engn, Iowa City, IA 52242 USA
[2] Univ Iowa, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA
[3] Univ Iowa, Dept Neurosurg, Iowa City, IA 52242 USA
来源:
关键词:
SURFACE MODIFICATION;
CARBOXYBETAINE;
POLYMERS;
POLY(CARBOXYBETAINE);
HYDROGELS;
POLYDIMETHYLSILOXANE;
PHOSPHORYLCHOLINE;
SULFOBETAINE;
ADHESION;
HEARING;
D O I:
10.1021/acs.langmuir.8b00838
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
The foreign body response (FBR) to implantable materials can negatively impact performance of medical devices such as the cochlear implant. Engineering surfaces that resist the FBR could lead to enhanced functionality including potentially improving outcomes for cochlear implant recipients through reduction in fibrosis. In this work, we coat poly-(dimethylsiloxane) (PDMS) surfaces with two zwitterionic polymers, poly(sulfobetaine methacrylate) (pSBMA) and poly(carboxybetaine methacrylate) (pCBMA), using a simultaneous photografting/photo-cross-linking process to produce a robust grafted zwitterionic hydrogel. reduce nonspecific protein adsorption, the first step of the FBR. The coating process uses benzophenone, a photografting agent and type II photoinitiator, to covalently link the cross-linked zwitterionic thin film to the PDMS surface. As the concentration of benzophenone on the surface increases, the adhesive strength of the zwitterionic thin films to PDMS surfaces increases as determined by shear adhesion. Additionally, with increased concentration of the adsorbed benzophenone, failure of the system changes from adhesive delamination to cohesive failure within the hydrogel, demonstrating that durable adhesive bonds are formed from the photografting process. Interestingly, antifouling properties of the zwitterionic polymers are preserved with significantly lower levels of nonspecific protein adsorption on zwitterion hydrogel-coated samples compared to uncoated controls. Fibroblast adhesion is also dramatically reduced on coated substrates. These results show that cross-linked pSBMA and pCBMA hydrogels can be readily photografted to PDMS substrates and show promise in potentially changing the fibrotic response to implanted biomaterials.
引用
收藏
页码:1100 / 1110
页数:11
相关论文