Time changes of local Dirichlet spaces by energy measures of harmonic functions

被引:2
作者
Kajino, Naotaka [1 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Kyoto 6068501, Japan
基金
日本学术振兴会;
关键词
Strong local Dirichlet spaces; time changes; harmonic functions; energy measures;
D O I
10.1515/FORM.2011.065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a (symmetric) recurrent local regular Dirichlet form with state space E and an associated symmetric diffusion {X-t}(t is an element of)[0,infinity) on E, we consider a function h which belongs to the extended Dirichlet space, is harmonic outside F-1 boolean OR F-2 and equal to a on F-1 and to b on F-2, where F-1. F-2 subset of E are (epsilon-quasi-)closed sets and a, b is an element of R, a < b. We prove that the time change of the real-valued process {h(X-t)}(t is an element of)[0,infinity) by the energy measure mu((h)) of h is a reflecting Brownian motion on [a, b]. As an application, we also discuss asymptotic analysis of the heat kernel on the harmonic Sierpinski gasket.
引用
收藏
页码:339 / 363
页数:25
相关论文
共 21 条
  • [1] [Anonymous], 2001, ANAL FRACTALS
  • [2] [Anonymous], 1991, DEGRUYTER STUDIES MA
  • [3] [Anonymous], 1994, DEGRUYTER STUDIES MA
  • [4] [Anonymous], 1991, BROWNIAN MOTION STOC
  • [5] [Anonymous], 1965, GRUNDLEHREN MATH WIS
  • [6] Barlow M., 1998, Lecture Notes in Math., V1690, P1, DOI [10.1007/BFb0092537, DOI 10.1007/BFB0092537]
  • [7] Crossing estimates for symmetric Markov processes
    Chen, ZQ
    Fitzsimmons, PJ
    Song, R
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2001, 120 (01) : 68 - 84
  • [8] CHEN ZQ, SYMMETRIC M IN PRESS
  • [9] Dellacherie C., 1978, N HOLLAND MATH STUDI
  • [10] Dudley R., 2002, CAMBRIDGE STUDIES AD, V74