Two applications of elementary knot theory to Lie algebras and Vassiliev invariants

被引:43
作者
Bar-Natan, D [1 ]
Le, TTQ
Thurston, DP
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
[2] SUNY Buffalo, Dept Math, Buffalo, NY 14214 USA
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
wheels; wheeling; Vassiliev invariants; Hopf link; 1+1=2; Duflo isomorphism; cabling;
D O I
10.2140/gt.2003.7.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using elementary equalities between various cables of the unknot and the Hopf link, we prove the Wheels and Wheeling conjectures of [ 5, 9], which give, respectively, the exact Kontsevich integral of the unknot and a map intertwining two natural products on a space of diagrams. It turns out that the Wheeling map is given by the Kontsevich integral of a cut Hopf link ( a bead on a wire), and its intertwining property is analogous to the computation of 1 + 1 = 2 on an abacus. The Wheels conjecture is proved from the fact that the k- fold connected cover of the unknot is the unknot for all k. Along the way, we fi nd a formula for the invariant of the general ( k; l) cable of a knot. Our results can also be interpreted as a new proof of the multiplicativity of the Duflo{Kirillov map S( g) --> U( g) for metrized Lie ( super-) algebras g.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 26 条
[1]   The non-commutative Weil algebra [J].
Alekseev, A ;
Meinrenken, E .
INVENTIONES MATHEMATICAE, 2000, 139 (01) :135-172
[2]  
[Anonymous], ALGEBRAIC STRUCTURES
[3]   Wheels, wheeling, and the Kontsevich integral of the unknot [J].
Bar-Natan, D ;
Garoufalidis, S ;
Rozansky, L ;
Thurston, DP .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 119 (1) :217-237
[4]  
Bar-Natan D., 2002, SELECTA MATH, V8, P341, DOI DOI 10.1007/S00029-002-8109-Z
[5]   ON THE VASSILIEV KNOT INVARIANTS [J].
BARNATAN, D .
TOPOLOGY, 1995, 34 (02) :423-472
[6]  
BARNATAN D, 1997, AMS IP STUD ADV MATH, P139
[7]   Remarks on the Vassiliev knot invariants coming from sl(2) [J].
Chmutov, SV ;
Varchenko, AN .
TOPOLOGY, 1997, 36 (01) :153-178
[8]  
Dixmier J., 1996, Graduate Studies in Mathematics, V11
[9]  
DUFLO M, 1977, ANN SCI ECOLE NORM S, V10, P265
[10]   Curvature and characteristic numbers of hyper-Kahler manifolds [J].
Hitchin, N ;
Sawon, J .
DUKE MATHEMATICAL JOURNAL, 2001, 106 (03) :599-615