A review on energy chemistry of fast-charging anodes

被引:537
作者
Cai, Wenlong [1 ]
Yao, Yu-Xing [1 ]
Zhu, Gao-Long [1 ,2 ]
Yan, Chong [3 ]
Jiang, Li-Li [1 ,4 ]
He, Chuanxin [2 ]
Huang, Jia-Qi [3 ]
Zhang, Qiang [1 ]
机构
[1] Tsinghua Univ, Beijing Key Lab Green Chem React Engn & Technol D, Beijing 100084, Peoples R China
[2] Shenzhen Univ, Coll Chem & Chem Engn, Shenzhen Key Lab Funct Polymer, Shenzhen 518061, Peoples R China
[3] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[4] Jilin Inst Chem Technol, Key Lab Special Funct Mat Jilin Prov Univ, Jilin 132022, Jilin, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
LITHIUM-ION BATTERIES; SOLID-ELECTROLYTE INTERPHASE; MOLECULAR-DYNAMICS SIMULATION; LI-ION; GRAPHITE ANODE; PROPYLENE CARBONATE; CYCLE LIFE; NATURAL GRAPHITE; HIGH-POWER; GRAPHITE/ELECTROLYTE INTERFACE;
D O I
10.1039/c9cs00728h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the impetus to accelerate worldwide market adoption of electrical vehicles and afford consumer electronics with better user experience, advancing fast-charging technology is an inevitable trend. However, current high-energy lithium-ion batteries are unable to support ultrafast power input without any adverse consequences, with the capacity fade and safety concerns of the mainstream graphite-based anodes being the key technological barrier. The aim of this review is to summarise the fundamentals, challenges, and solutions to enable graphite anodes that are capable of high-rate charging. First, we explore the complicated yet intriguing graphite-electrolyte interface during intercalation based on existing theories. Second, we analyse the key dilemmas facing fast-charging graphite anodes. Finally, some promising strategies proposed during the past few years are highlighted so as to outline current trends and future perspectives in this field.
引用
收藏
页码:3806 / 3833
页数:28
相关论文
共 246 条
[51]   Low-Temperature Characteristics and Film-Forming Mechanism of Elemental Sulfur Additive on Graphite Negative Electrode [J].
Jurng, Sunhyung ;
Kim, Hyun-seung ;
Lee, Jae Gil ;
Ryu, Ji Heon ;
Oh, Seung M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (02) :A223-A228
[52]  
Kamaya N, 2011, NAT MATER, V10, P682, DOI [10.1038/nmat3066, 10.1038/NMAT3066]
[53]   High-power all-solid-state batteries using sulfide superionic conductors [J].
Kato, Yuki ;
Hori, Satoshi ;
Saito, Toshiya ;
Suzuki, Kota ;
Hirayama, Masaaki ;
Mitsui, Akio ;
Yonemura, Masao ;
Iba, Hideki ;
Kanno, Ryoji .
NATURE ENERGY, 2016, 1
[54]   Charging protocols for lithium-ion batteries and their impact on cycle life-An experimental study with different 18650 high-power cells [J].
Keil, Peter ;
Jossen, Andreas .
JOURNAL OF ENERGY STORAGE, 2016, 6 :125-141
[55]   Improved fast charging capability of graphite anodes via amorphous Al2O3 coating for high power lithium ion batteries [J].
Kim, Dae Sik ;
Kim, Yeong Eun ;
Kim, Hansu .
JOURNAL OF POWER SOURCES, 2019, 422 :18-24
[56]   Infiltration of Solution-Processable Solid Electrolytes into Conventional Li-Ion-Battery Electrodes for All-Solid-State Li-Ion Batteries [J].
Kim, Dong Hyeon ;
Oh, Dae Yang ;
Park, Kern Ho ;
Choi, Young Eun ;
Nam, Young Jin ;
Lee, Han Ah ;
Lee, Sang-Min ;
Jung, Yoon Seok .
NANO LETTERS, 2017, 17 (05) :3013-3020
[57]   Exploiting Lithium-Ether Co-Intercalation in Graphite for High-Power Lithium-Ion Batteries [J].
Kim, Haegyeom ;
Lim, Kyungmi ;
Yoon, Gabin ;
Park, Jae-Hyuk ;
Ku, Kyojin ;
Lim, Hee-Dae ;
Sung, Yung-Eun ;
Kang, Kisuk .
ADVANCED ENERGY MATERIALS, 2017, 7 (19)
[58]   Thermal Degradation of Solid Electrolyte Interphase (SEI) Layers by Phosphorus Pentafluoride (PF5) Attack [J].
Kim, Jongjung ;
Lee, Jae Gil ;
Kim, Hyun-seung ;
Lee, Tae Jin ;
Park, Hosang ;
Ryu, Ji Heon ;
Oh, Seung M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (12) :A2418-A2425
[59]   A combination of lithium difluorophosphate and vinylene carbonate as reducible additives to improve cycling performance of graphite electrodes at high rates [J].
Kim, Ko-Eun ;
Jang, Jun Yeong ;
Park, Inbok ;
Woo, Myung-Heui ;
Jeong, Myung-Hwan ;
Shin, Woo Cheol ;
Ue, Makoto ;
Choi, Nam-Soon .
ELECTROCHEMISTRY COMMUNICATIONS, 2015, 61 :121-124
[60]   Snail reprograms glucose metabolism by repressing phosphofructokinase PFKP allowing cancer cell survival under metabolic stress [J].
Kim, Nam Hee ;
Cha, Yong Hoon ;
Lee, Jueun ;
Lee, Seon-Hyeong ;
Yang, Ji Hye ;
Yun, Jun Seop ;
Cho, Eunae Sandra ;
Zhang, Xianglan ;
Nam, Miso ;
Kim, Nami ;
Yuk, Young-Su ;
Cha, So Young ;
Lee, Yoonmi ;
Ryu, Joo Kyung ;
Park, Sunghyouk ;
Cheong, Jae-Ho ;
Kang, Sang Won ;
Kim, Soo-Youl ;
Hwang, Geum-Sook ;
Yook, Jong In ;
Kim, Hyun Sil .
NATURE COMMUNICATIONS, 2017, 8