A review on energy chemistry of fast-charging anodes

被引:521
作者
Cai, Wenlong [1 ]
Yao, Yu-Xing [1 ]
Zhu, Gao-Long [1 ,2 ]
Yan, Chong [3 ]
Jiang, Li-Li [1 ,4 ]
He, Chuanxin [2 ]
Huang, Jia-Qi [3 ]
Zhang, Qiang [1 ]
机构
[1] Tsinghua Univ, Beijing Key Lab Green Chem React Engn & Technol D, Beijing 100084, Peoples R China
[2] Shenzhen Univ, Coll Chem & Chem Engn, Shenzhen Key Lab Funct Polymer, Shenzhen 518061, Peoples R China
[3] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[4] Jilin Inst Chem Technol, Key Lab Special Funct Mat Jilin Prov Univ, Jilin 132022, Jilin, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
LITHIUM-ION BATTERIES; SOLID-ELECTROLYTE INTERPHASE; MOLECULAR-DYNAMICS SIMULATION; LI-ION; GRAPHITE ANODE; PROPYLENE CARBONATE; CYCLE LIFE; NATURAL GRAPHITE; HIGH-POWER; GRAPHITE/ELECTROLYTE INTERFACE;
D O I
10.1039/c9cs00728h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the impetus to accelerate worldwide market adoption of electrical vehicles and afford consumer electronics with better user experience, advancing fast-charging technology is an inevitable trend. However, current high-energy lithium-ion batteries are unable to support ultrafast power input without any adverse consequences, with the capacity fade and safety concerns of the mainstream graphite-based anodes being the key technological barrier. The aim of this review is to summarise the fundamentals, challenges, and solutions to enable graphite anodes that are capable of high-rate charging. First, we explore the complicated yet intriguing graphite-electrolyte interface during intercalation based on existing theories. Second, we analyse the key dilemmas facing fast-charging graphite anodes. Finally, some promising strategies proposed during the past few years are highlighted so as to outline current trends and future perspectives in this field.
引用
收藏
页码:3806 / 3833
页数:28
相关论文
共 246 条
[1]   Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte - A key to enhancing the rate capability of lithium-ion batteries [J].
Abe, T ;
Sagane, F ;
Ohtsuka, M ;
Iriyama, Y ;
Ogumi, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (11) :A2151-A2154
[2]   Solvated Li-ion transfer at interface between graphite and electrolyte [J].
Abe, T ;
Fukuda, H ;
Iriyama, Y ;
Ogumi, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (08) :A1120-A1123
[3]   Enabling fast charging - A battery technology gap assessment [J].
Ahmed, Shabbir ;
Bloom, Ira ;
Jansen, Andrew N. ;
Tanim, Tanvir ;
Dufek, Eric J. ;
Pesaran, Ahmad ;
Burnham, Andrew ;
Carlson, Richard B. ;
Dias, Fernando ;
Hardy, Keith ;
Keyser, Matthew ;
Kreuzer, Cory ;
Markel, Anthony ;
Meintz, Andrew ;
Michelbacher, Christopher ;
Mohanpurkar, Manish ;
Nelson, Paul A. ;
Robertson, David. C. ;
Scoffield, Don ;
Shirk, Matthew ;
Stephens, Thomas ;
Vijayagopal, Ram ;
Zhang, Jiucai .
JOURNAL OF POWER SOURCES, 2017, 367 :250-262
[4]   Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes [J].
Arora, P ;
Doyle, M ;
White, RE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (10) :3543-3553
[5]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[6]   THE STUDY OF ELECTROLYTE-SOLUTIONS BASED ON ETHYLENE AND DIETHYL CARBONATES FOR RECHARGEABLE LI BATTERIES .2. GRAPHITE-ELECTRODES [J].
AURBACH, D ;
EINELI, Y ;
MARKOVSKY, B ;
ZABAN, A ;
LUSKI, S ;
CARMELI, Y ;
YAMIN, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (09) :2882-2890
[7]   Factors which limit the cycle life of rechargeable lithium (metal) batteries [J].
Aurbach, D ;
Zinigrad, E ;
Teller, H ;
Dan, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1274-1279
[8]   Nonlinear aging of cylindrical lithium-ion cells linked to heterogeneous compression [J].
Bach, Tobias C. ;
Schuster, Simon F. ;
Fleder, Elena ;
Mueller, Jana ;
Brand, Martin J. ;
Lorrmann, Henning ;
Jossen, Andreas ;
Sextl, Gerhard .
JOURNAL OF ENERGY STORAGE, 2016, 5 :212-223
[9]   FILMING MECHANISM OF LITHIUM-CARBON ANODES IN ORGANIC AND INORGANIC ELECTROLYTES [J].
BESENHARD, JO ;
WINTER, M ;
YANG, J ;
BIBERACHER, W .
JOURNAL OF POWER SOURCES, 1995, 54 (02) :228-231
[10]   Electrochemical cycling behaviour of lithium carbonate (Li2CO3) pre-treated graphite anodes - SEI formation and graphite damage mechanisms [J].
Bhattacharya, Sandeep ;
Riahi, A. Reza ;
Alpas, Ahmet T. .
CARBON, 2014, 77 :99-112