An antenna model for the Purcell effect

被引:175
作者
Krasnok, Alexander E. [1 ]
Slobozhanyuk, Alexey P. [1 ,2 ]
Simovski, Constantin R. [1 ,3 ]
Tretyakov, Sergei A. [3 ]
Poddubny, Alexander N. [1 ,4 ]
Miroshnichenko, Andrey E. [2 ]
Kivshar, Yuri S. [1 ,2 ]
Belov, Pavel A. [1 ]
机构
[1] ITMO Univ, St Petersburg 197101, Russia
[2] Australian Natl Univ, Res Sch Phys & Engn, Nonlinear Phys Ctr, Canberra, ACT 0200, Australia
[3] Aalto Univ, Sch Elect Engn, FI-00076 Aalto, Finland
[4] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
关键词
SPONTANEOUS-EMISSION CONTROL; ENHANCEMENT; VICINITY; DIPOLES; ATOMS; DECAY;
D O I
10.1038/srep12956
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Purcell effect is defined as a modification of the spontaneous emission rate of a quantum emitter at the presence of a resonant cavity. However, a change of the emission rate of an emitter caused by an environment has a classical counterpart. Any small antenna tuned to a resonance can be described as an oscillator with radiative losses, and the effect of the environment on its radiation can be modeled and measured in terms of the antenna radiation resistance, similar to a quantum emitter. We exploit this analogue behavior to develop a general approach for calculating the Purcell factors of different systems and various frequency ranges including both electric and magnetic Purcell factors. Our approach is illustrated by a general equivalent scheme, and it allows resenting the Purcell factor through the continuous radiation of a small antenna at the presence of an electromagnetic environment.
引用
收藏
页数:16
相关论文
共 61 条
[1]   Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas [J].
Acuna, G. P. ;
Moeller, F. M. ;
Holzmeister, P. ;
Beater, S. ;
Lalkens, B. ;
Tinnefeld, P. .
SCIENCE, 2012, 338 (6106) :506-510
[2]   NANO-OPTICS The Purcell factor of nanoresonators [J].
Agio, Mario ;
Cano, Diego Martin .
NATURE PHOTONICS, 2013, 7 (09) :674-675
[3]   Mapping and Quantifying Electric and Magnetic Dipole Luminescence at the Nanoscale [J].
Aigouy, L. ;
Caze, A. ;
Gredin, P. ;
Mortier, M. ;
Carminati, R. .
PHYSICAL REVIEW LETTERS, 2014, 113 (07)
[4]   Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas [J].
Alu, Andrea ;
Engheta, Nader .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)
[5]  
Andersen ML, 2011, NAT PHYS, V7, P215, DOI [10.1038/nphys1870, 10.1038/NPHYS1870]
[6]  
[Anonymous], 2007, Modern Antenna Handbook
[7]   Decay of excited atoms in absorbing dielectrics [J].
Barnett, SM ;
Huttner, B ;
Loudon, R ;
Matloob, R .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1996, 29 (16) :3763-3781
[8]   Nanoscale Fluorescence Lifetime Imaging of an Optical Antenna with a Single Diamond NV Center [J].
Beams, Ryan ;
Smith, Dallas ;
Johnson, Timothy W. ;
Oh, Sang-Hyun ;
Novotny, Lukas ;
Vamivakas, A. Nick .
NANO LETTERS, 2013, 13 (08) :3807-3811
[9]  
Bladel J.G. V., 2007, Electromagnetic Fields
[10]   Nanophotonic Control of the Forster Resonance Energy Transfer Efficiency [J].
Blum, Christian ;
Zijlstra, Niels ;
Lagendijk, Ad ;
Wubs, Martijn ;
Mosk, Allard P. ;
Subramaniam, Vinod ;
Vos, Willem L. .
PHYSICAL REVIEW LETTERS, 2012, 109 (20)