Geodesic discs in Teichmuller space

被引:8
作者
Li, Z [1 ]
机构
[1] Peking Univ, LMAM, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2005年 / 48卷 / 08期
关键词
Teichmuller space; geodesic discs;
D O I
10.1360/04ys0122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let T(S) be the Teichmuller space of a Riemann surface S. By definition, a geodesic disc in T(S) is the image of an isometric embedding of the Poincare disc into T(S). It is shown in this paper that for any non-Strebel point tau is an element of T(S), there are infinitely many geodesic discs containing [0] and tau.
引用
收藏
页码:1075 / 1082
页数:8
相关论文
共 9 条
[1]  
[Anonymous], COMPLEX VAR
[2]  
EARLE E, 1999, J GEOM ANAL, V9, P57
[3]  
ERALE C, 1994, T AM MATH SOC, V343, P927
[4]  
Gardiner FP., 1987, Teichmuller Theory and Quadratic Differentials
[5]  
LAKIC N, 1997, CONT MATH, V211
[6]  
LI Z, 1993, ANN ACAD SCI FENN-M, V18, P355
[7]  
Li Z., 1995, BEIJING MATH, V1, P187
[8]  
SHEN YL, 1995, ADV MATH BEIJING, V24, P237
[9]   HOLOMORPHIC FAMILIES OF GEODESIC DISKS IN INFINITE DIMENSIONAL TEICHMULLER-SPACES [J].
TANIGAWA, H .
NAGOYA MATHEMATICAL JOURNAL, 1992, 127 :117-128