Cultured macrophages transfer surplus cholesterol into adjacent cells in the absence of serum or high-density lipoproteins

被引:27
作者
He, Cuiwen [1 ]
Jiang, Haibo [2 ]
Song, Wenxin [1 ]
Riezman, Howard [3 ,4 ]
Tontonoz, Peter [5 ]
Weston, Thomas A. [1 ]
Guagliardo, Paul [6 ]
Kim, Paul H. [1 ]
Jung, Rachel [1 ]
Heizer, Patrick [1 ]
Fong, Loren G. [1 ]
Young, Stephen G. [1 ,7 ]
机构
[1] Univ Calif Los Angeles, Dept Med, Los Angeles, CA 90095 USA
[2] Univ Western Australia, Sch Mol Sci, Nedlands, WA 6009, Australia
[3] Univ Geneva, Dept Biochem, CH-1211 Geneva 4, Switzerland
[4] Univ Geneva, Natl Ctr Competence Res, Chem Biol, CH-1211 Geneva 4, Switzerland
[5] Univ Calif Los Angeles, Dept Human Genet, Los Angeles, CA 90095 USA
[6] Univ Western Australia, Ctr Microscopy Characterisat & Anal, Perth, WA 6009, Australia
[7] Univ Calif Los Angeles, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA
基金
澳大利亚研究理事会; 瑞士国家科学基金会;
关键词
macrophages; smooth muscle cells; nanoSIMS imaging; cholesterol; EFFLUX; ABCA1; HDL; MECHANISMS; TRANSPORT; ABCG1;
D O I
10.1073/pnas.1922879117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cholesterol-laden macrophage foam cells are a hallmark of atherosclerosis. For that reason, cholesterol metabolism in macrophages has attracted considerable scrutiny, particularly the mechanisms by which macrophages unload surplus cholesterol (a process referred to as "cholesterol efflux"). Many studies of cholesterol efflux in macrophages have focused on the role of ABC transporters in moving cholesterol onto high-density lipoproteins (HDLs), but other mechanisms for cholesterol efflux likely exist. We hypothesized that macrophages have the capacity to unload cholesterol directly onto adjacent cells. To test this hypothesis, we used methyl-beta-cyclodextrin (M beta CD) to load mouse peritoneal macrophages with [C-13]cholesterol. We then plated the macrophages (in the absence of serum or HDL) onto smooth muscle cells (SMCs) that had been metabolically labeled with [N-15]choline. After incubating the cells overnight in the absence of HDL or serum, we visualized C-13 and N-15 distribution by nanoscale secondary ion mass spectrometry (NanoSIMS). We observed substantial C-13 enrichment in SMCs that were adjacent to [C-13]cholesterol-loaded macrophages-including in cytosolic lipid droplets of SMCs. In follow-up studies, we depleted "accessible cholesterol" from the plasma membrane of [C-13]cholesterol-loaded macrophages with M beta CD before plating the macrophages onto the SMCs. After an overnight incubation, we again observed substantial C-13 enrichment in the SMCs adjacent to macrophages. Thus, macrophages transfer cholesterol to adjacent cells in the absence of serum or HDL. We suspect that macrophages within tissues transfer cholesterol to adjacent cells, thereby contributing to the ability to unload surplus cholesterol.
引用
收藏
页码:10476 / 10483
页数:8
相关论文
共 27 条
[1]   D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage [J].
Alfonso-Garcia, Alba ;
Pfisterer, Simon G. ;
Riezman, Howard ;
Ikonen, Elina ;
Potma, Eric O. .
JOURNAL OF BIOMEDICAL OPTICS, 2016, 21 (06)
[2]   Elimination of cholesterol in macrophages and endothelial cells by the sterol 27-hydroxylase mechanism - Comparison with high density lipoprotein-mediated reverse cholesterol transport [J].
Babiker, A ;
Andersson, O ;
Lund, E ;
Xiu, RJ ;
Deeb, S ;
Reshef, A ;
Leitersdorf, E ;
Diczfalusy, U ;
Bjorkhem, I .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (42) :26253-26261
[3]   The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease [J].
Bodzioch, M ;
Orsó, E ;
Klucken, T ;
Langmann, T ;
Böttcher, L ;
Diederich, W ;
Drobnik, W ;
Barlage, S ;
Büchler, C ;
Porsch-Özcürümez, M ;
Kaminski, WE ;
Hahmann, HW ;
Oette, K ;
Rothe, G ;
Aslanidis, C ;
Lackner, KJ ;
Schmitz, G .
NATURE GENETICS, 1999, 22 (04) :347-351
[4]   Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency [J].
Brooks-Wilson, A ;
Marcil, M ;
Clee, SM ;
Zhang, LH ;
Roomp, K ;
van Dam, M ;
Yu, L ;
Brewer, C ;
Collins, JA ;
Molhuizen, HOF ;
Loubser, O ;
Ouelette, BFF ;
Fichter, K ;
Ashbourne-Excoffon, KJD ;
Sensen, CW ;
Scherer, S ;
Mott, S ;
Denis, M ;
Martindale, D ;
Frohlich, J ;
Morgan, K ;
Koop, B ;
Pimstone, S ;
Kastelein, JJP ;
Genest, J ;
Hayden, MR .
NATURE GENETICS, 1999, 22 (04) :336-345
[5]   A PPARγ-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis [J].
Chawla, A ;
Boisvert, WA ;
Lee, CH ;
Laffitte, BA ;
Barak, Y ;
Joseph, SB ;
Liao, D ;
Nagy, L ;
Edwards, PA ;
Curtiss, LK ;
Evans, RM ;
Tontonoz, P .
MOLECULAR CELL, 2001, 7 (01) :161-171
[6]   Macrophage reverse cholesterol transport - Key to the regression of atherosclerosis? [J].
Cuchel, Marina ;
Rader, Daniel J. .
CIRCULATION, 2006, 113 (21) :2548-2555
[7]   Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis [J].
Das, Akash ;
Brown, Michael S. ;
Anderson, Donald D. ;
Goldstein, Joseph L. ;
Radhakrishnan, Arun .
ELIFE, 2014, 3
[8]   Tunneling nanotubes: intimate Communication between Myeloid Cells [J].
Dupont, Maeva ;
Souriant, Shanti ;
Lugo-Villarino, Geanncarlo ;
Maridonneau-Parini, Isabelle ;
Verollet, Christel .
FRONTIERS IN IMMUNOLOGY, 2018, 9
[9]   COMBINED CLINICAL STAFF CONFERENCE AT NATIONAL INSTITUTES OF HEALTH [J].
FREDRICKSON, D ;
GOODMAN, DWS ;
GOODMAN, HC ;
ALTROCCHI, PH ;
AVIOLI, LV .
ANNALS OF INTERNAL MEDICINE, 1961, 55 (06) :1016-+
[10]   ABCG1-mediated generation of extracellular cholesterol microdomains [J].
Freeman, Sebastian R. ;
Jin, Xueting ;
Anzinger, Joshua J. ;
Xu, Qing ;
Purushothaman, Sonya ;
Fessler, Michael B. ;
Addadi, Lia ;
Kruth, Howard S. .
JOURNAL OF LIPID RESEARCH, 2014, 55 (01) :115-127