Electrospun Thin-Walled CuCo2O4@C Nanotubes as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries

被引:210
|
作者
Wang, Xiaojun [1 ]
Li, Yang [1 ]
Jin, Ting [1 ]
Meng, Jing [1 ]
Jiao, Lifang [1 ,2 ]
Zhu, Min [3 ,4 ]
Chen, Jun [1 ,2 ]
机构
[1] Nankai Univ, Coll Chem, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
[2] Nankai Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300071, Peoples R China
[3] South China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510641, Guangdong, Peoples R China
[4] South China Univ Technol, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510641, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Thin-walled CuCo2O4@C nanotubes; coaxial electrospinning; bifunctional oxygen electrocatalyst; Zn-air batteries; HOLLOW NANOFIBERS; REDUCTION; CARBON; EFFICIENT; CATHODE; GRAPHENE; HYBRID; OXIDE; NANOPARTICLES; SPINELS;
D O I
10.1021/acs.nanolett.7b04502
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rational design of optimal bifunctional oxygen electrocatalyst with low cost and high activity is greatly desired for realization of rechargeable Zn-air batteries. Herein, we fabricate mesoporous thin-walled CuCo2O4@C with abundant nitrogen-doped nanotubes via coaxial electrospinning technique. Benefiting from high catalytic activity of ultrasmall CuCo2O4 particles, double active specific surface area of mesoporous nanotubes, and strong coupling with N-doped carbon matrix, the obtained CuCo2O4@C exhibits outstanding oxygen electrocatalytic activity and stability, in terms of a positive onset potential (0.951 V) for oxygen reduction reaction (ORR) and a low overpotential (327 mV at 10 mA cm(-2)) for oxygen evolution reaction (OER). Significantly, when used as cathode catalyst for Zn-air batteries, CuCo(2)O4@C also displays a low charge-discharge voltage gap (0.79 V at 10 mA crn(-2)) and a long cycling life (up to 160 cycles for 80 h). With desirable architecture and excellent electrocatalytic properties, the CuCo2O4@C is considered a promising electrocatalyst for Zn-air batteries.
引用
收藏
页码:7989 / 7994
页数:6
相关论文
共 50 条
  • [1] Bifunctional electrocatalysts for rechargeable Zn-air batteries
    Guo, Yibo
    Chen, Ya-Nan
    Cui, Huijuan
    Zhou, Zhen
    CHINESE JOURNAL OF CATALYSIS, 2019, 40 (09) : 1298 - 1310
  • [2] FeZrRu Trimetallic bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries
    Zhang, Yantong
    Wang, Zilong
    Guo, Sitian
    Zhang, Zihan
    Zeng, Xiaoyuan
    Dong, Peng
    Li, Mian
    Xiao, Jie
    Zhang, Chengxu
    Hu, Jue
    Zhang, Yingjie
    ELECTROCHIMICA ACTA, 2023, 437
  • [3] Interface engineering of bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries
    Li, Yunrui
    Zhang, Libo
    Han, Ying
    Ji, Wenxi
    Liu, Zhongyuan
    Wang, Baoshun
    Zhao, Siming
    Wu, Xueke
    Zhang, Longgui
    Zhang, Rufan
    MATERIALS CHEMISTRY FRONTIERS, 2023, 7 (19) : 4281 - 4303
  • [4] Rational design of spinel oxides as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries
    Dai, Yawen
    Yu, Jie
    Ni, Meng
    Shao, Zongping
    CHEMICAL PHYSICS REVIEWS, 2020, 1 (01):
  • [5] Co, Fe codoped holey carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries
    Zhang, Xueting
    Zhu, Zhenye
    Tan, Yuanbo
    Qin, Ke
    Ma, Fei-Xiang
    Zhang, Jiaheng
    CHEMICAL COMMUNICATIONS, 2021, 57 (16) : 2049 - 2052
  • [6] Amorphous Bimetallic Oxide-Graphene Hybrids as Bifunctional Oxygen Electrocatalysts for Rechargeable Zn-Air Batteries
    Wei, Li
    Karahan, H. Enis
    Zhai, Shengli
    Liu, Hongwei
    Chen, Xuncai
    Zhou, Zheng
    Lei, Yaojie
    Liu, Zongwen
    Chen, Yuan
    ADVANCED MATERIALS, 2017, 29 (38)
  • [7] Engineering electrospun nanofiber electrocatalysts for oxygen electrocatalysis in Zn-air batteries
    Hui, Jing
    Kang, Yuping
    Wang, Chenyue
    Gao, Xuechun
    Zhao, Yitao
    Ding, Changming
    Qiao, Zhiyong
    IONICS, 2025,
  • [8] Carbon-coated MnCo2O4 nanowire as bifunctional oxygen catalysts for rechargeable Zn-air batteries
    Cui Shenghai
    Sun Liping
    Kong Fanhao
    Huo Lihua
    Zhao Hui
    JOURNAL OF POWER SOURCES, 2019, 430 : 25 - 31
  • [9] NiCo2O4 nanoarray on CNT sponge: a bifunctional oxygen electrode material for rechargeable Zn-air batteries
    Gangadharan, Pranav K.
    Bhange, Siddheshwar N.
    Kabeer, Nasrin
    Illathvalappil, Rajith
    Kurungot, Sreekumar
    NANOSCALE ADVANCES, 2019, 1 (08): : 3243 - 3251
  • [10] Highly efficient Co3O4/Co@NCs bifunctional oxygen electrocatalysts for long life rechargeable Zn-air batteries
    Yu, Neng-Fei
    Wu, Chang
    Huang, Wen
    Chen, You-Hu
    Ruan, Da-Qian
    Bao, Kai-Lin
    Chen, Hui
    Zhang, Yi
    Zhu, Yusong
    Huang, Qing-Hong
    Lai, Wei-Hong
    Wang, Yun-Xiao
    Liao, Hong-Gang
    Sun, Shi-Gang
    Wu, Yu-Ping
    Wang, Jiazhao
    NANO ENERGY, 2020, 77