Convergence Analysis of Crank-Nicolson Galerkin-Galerkin FEMs for Miscible Displacement in Porous Media

被引:9
作者
Cai, Wentao [1 ]
Wang, Jilu [2 ]
Wang, Kai [3 ]
机构
[1] Hangzhou Dianzi Univ, Sch Sci, Dept Math, Hangzhou, Zhejiang, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Incompressible miscible flow; Crank-Nicolson; Finite element method; Error estimate; FINITE-ELEMENT-METHOD; COMPOSITIONAL FLOW; ERROR ANALYSIS; APPROXIMATION; EQUATIONS;
D O I
10.1007/s10915-020-01194-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a fully discrete linearized Crank-Nicolson Galerkin-Galerkin finite element method for solving the partial differential equations which govern incompressible miscible flow in porous media. We prove optimal-order convergence of the fully discrete finite element solutions without any restrictions on the step size of time discretization. Numerical examples are provided to illustrate the theoretical results.
引用
收藏
页数:26
相关论文
共 39 条
[31]   Unconditional superconvergent analysis of a new mixed finite element method for Ginzburg-Landau equation [J].
Shi, Dongyang ;
Liu, Qian .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (01) :422-439
[32]   An approximation of incompressible miscible displacement in porous media by mixed finite element method and characteristics-mixed finite element method [J].
Sun, Tongjun ;
Yuan, Yirang .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 228 (01) :391-411
[33]   An approximation to miscible fluid flows in porous media with point sources and sinks by an Eulerian-Lagrangian localized adjoint method and mixed finite element methods [J].
Wang, H ;
Liang, D ;
Ewing, RE ;
Lyons, SL ;
Qin, G .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (02) :561-581
[34]   An Eulerian-Lagrangian solution technique for single-phase compositional flow in three-dimensional porous media [J].
Wang, Hong ;
Zhao, Weidong ;
Ewing, R. E. ;
Al-Lawatia, M. ;
Espedal, M. S. ;
Telyakovskiy, A. S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (05) :607-624
[35]   A COMPONENT-BASED EULERIAN-LAGRANGIAN FORMULATION FOR MULTICOMPONENT MULTIPHASE COMPOSITIONAL FLOW AND TRANSPORT IN POROUS MEDIA [J].
Wang, Hong ;
Zhao, Weidong ;
Espedal, Magne S. ;
Telyakovskiy, Aleksey S. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (02) :B462-B486
[36]   An optimal-order error estimate for a family of ELLAM-MFEM approximations to porous medium flow [J].
Wang, Hong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (04) :2133-2152
[37]   Unconditional stability and convergence of Crank-Nicolson Galerkin FEMs for a nonlinear Schrodinger-Helmholtz system [J].
Wang, Jilu .
NUMERISCHE MATHEMATIK, 2018, 139 (02) :479-503
[38]   A New Error Analysis of Crank-Nicolson Galerkin FEMs for a Generalized Nonlinear Schrodinger Equation [J].
Wang, Jilu .
JOURNAL OF SCIENTIFIC COMPUTING, 2014, 60 (02) :390-407
[39]   PRIORI L2 ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS TO PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS [J].
WHEELER, MF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (04) :723-759