Convergence Analysis of Crank-Nicolson Galerkin-Galerkin FEMs for Miscible Displacement in Porous Media

被引:9
作者
Cai, Wentao [1 ]
Wang, Jilu [2 ]
Wang, Kai [3 ]
机构
[1] Hangzhou Dianzi Univ, Sch Sci, Dept Math, Hangzhou, Zhejiang, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Incompressible miscible flow; Crank-Nicolson; Finite element method; Error estimate; FINITE-ELEMENT-METHOD; COMPOSITIONAL FLOW; ERROR ANALYSIS; APPROXIMATION; EQUATIONS;
D O I
10.1007/s10915-020-01194-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a fully discrete linearized Crank-Nicolson Galerkin-Galerkin finite element method for solving the partial differential equations which govern incompressible miscible flow in porous media. We prove optimal-order convergence of the fully discrete finite element solutions without any restrictions on the step size of time discretization. Numerical examples are provided to illustrate the theoretical results.
引用
收藏
页数:26
相关论文
共 39 条
[11]   SOME IMPROVED ERROR-ESTIMATES FOR THE MODIFIED METHOD OF CHARACTERISTICS [J].
DAWSON, CN ;
RUSSELL, TF ;
WHEELER, MF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1487-1512
[12]  
DOUGLAS J, 1983, RAIRO-ANAL NUMER-NUM, V17, P249
[15]   GALERKIN METHODS FOR MISCIBLE DISPLACEMENT PROBLEMS IN POROUS-MEDIA [J].
EWING, RE ;
WHEELER, MF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (03) :351-365
[16]   CONVERGENCE ANALYSIS OF AN APPROXIMATION OF MISCIBLE DISPLACEMENT IN POROUS-MEDIA BY MIXED FINITE-ELEMENTS AND A MODIFIED METHOD OF CHARACTERISTICS [J].
EWING, RE ;
RUSSELL, TF ;
WHEELER, MF .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 47 (1-2) :73-92
[17]  
Ewing RE, 2001, J COMPUT APPL MATH, V128, P423, DOI 10.1016/S0377-0427(00)00522-7
[18]   Applications of discrete maximal Lp regularity for finite element operators [J].
Geissert, Matthias .
NUMERISCHE MATHEMATIK, 2007, 108 (01) :121-149
[19]  
Grisvard P, 2011, CLASS APPL MATH, V69, P1, DOI 10.1137/1.9781611972030
[20]   Stable Crank-Nicolson Discretisation for Incompressible Miscible Displacement Problems of Low Regularity [J].
Jensen, Max ;
Mueller, Ruediger .
NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, :469-477