Convergence Analysis of Crank-Nicolson Galerkin-Galerkin FEMs for Miscible Displacement in Porous Media

被引:9
作者
Cai, Wentao [1 ]
Wang, Jilu [2 ]
Wang, Kai [3 ]
机构
[1] Hangzhou Dianzi Univ, Sch Sci, Dept Math, Hangzhou, Zhejiang, Peoples R China
[2] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Incompressible miscible flow; Crank-Nicolson; Finite element method; Error estimate; FINITE-ELEMENT-METHOD; COMPOSITIONAL FLOW; ERROR ANALYSIS; APPROXIMATION; EQUATIONS;
D O I
10.1007/s10915-020-01194-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a fully discrete linearized Crank-Nicolson Galerkin-Galerkin finite element method for solving the partial differential equations which govern incompressible miscible flow in porous media. We prove optimal-order convergence of the fully discrete finite element solutions without any restrictions on the step size of time discretization. Numerical examples are provided to illustrate the theoretical results.
引用
收藏
页数:26
相关论文
共 39 条
[1]  
[Anonymous], 1990, INTRO MODELING TRANS, DOI DOI 10.1007/978-94-009-1926-6_7
[2]  
[Anonymous], 2010, Partial Differential Equations
[3]  
[Anonymous], HDB NUMERICAL ANAL 1
[4]  
[Anonymous], 1997, SPRINGER SERIES COMP
[5]  
[Anonymous], 1977, Fundamentals of Numerical Reservoir Simulation
[6]  
[Anonymous], 1966, ANN SCUOLA NORM-SCI
[7]   A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media [J].
Arbogast, T ;
Wheeler, MF ;
Zhang, NY .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (04) :1669-1687
[8]  
Auscher P, 2002, B UNIONE MAT ITAL, V5B, P487
[9]  
Bear J., 1967, Int Assoc of Sci Hydro, V72, P7
[10]  
Chavent Guy., 1986, Mathematical Models and Finite Elements for Reservoir Simulation