Rigorous Analytical Analysis of Resonant Euler-Bernoulli Beams with Constant Thickness and Polynomial Width

被引:3
作者
Beigelbeck, R. [1 ]
Stiffer, M. [1 ]
Schneider, M. [2 ]
Keplinger, F. [2 ]
Schmid, U. [2 ]
Voglhuber-Brunnmaier, T. [3 ]
Jakoby, B. [3 ]
机构
[1] Danube Univ Krems, Ctr Integrated Sensor Syst, A-2700 Wiener Neustadt, Austria
[2] Vienna Univ Technol, Inst Sensor & Actuator Syst, A-1040 Vienna, Austria
[3] Johannes Kepler Univ Linz, Inst Microelect & Microsensors, A-4040 Linz, Austria
来源
2014 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS) | 2014年
关键词
TRANSVERSE VIBRATIONS;
D O I
10.1109/ULTSYM.2014.0522
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We report a novel exact closed-form solution of the Euler-Bernoulli beam equation expressible in terms of Meijer Gfunctions. This solution allows for analytically studying the natural frequencies and mode shapes of a very general class of beams characterized by both a polynomially varying flexural beam bending stiffness EI. x/and beam cross section A(x), but a constant E1(x/A(x))-ratio. Its application is exemplarily demonstrated on cantilevers characterized by a uniform thickness and a spatially narrowing width of either linear form (i.e., trapezoid cantilevers) or describable by a power function of higher order. The analytically deduced results are validated by computer numerical simulations and compared to test measurements carried out on micromachined thin-film cantilevers.
引用
收藏
页码:2095 / 2099
页数:5
相关论文
共 14 条
[1]  
Abramowitz M., 1964, Handbook of mathematical functions with formulas, graphs, and mathematical tables, DOI DOI 10.1119/1.15378
[2]  
[Anonymous], 1955, HIGHER TRANSCENDENTA
[3]  
[Anonymous], 1953, Higher transcendental functions
[4]   Vibration tailoring of inhomogeneous rod that possesses a trigonometric fundamental mode shape [J].
Calio, Ivo ;
Elishakoff, Isaac .
JOURNAL OF SOUND AND VIBRATION, 2008, 309 (3-5) :838-842
[5]   Classical Jacobi polynomials, closed-form solutions for transverse vibrations [J].
Caruntu, Dumitru I. .
JOURNAL OF SOUND AND VIBRATION, 2007, 306 (3-5) :467-494
[6]   Dynamic modal characteristics of transverse vibrations of cantilevers of parabolic thickness [J].
Caruntu, Dumitru I. .
MECHANICS RESEARCH COMMUNICATIONS, 2009, 36 (03) :391-404
[7]  
Clough R., 1975, Dynamics of Structures
[8]   Vibration tailoring of heterogeneous beams and annular plates [J].
Elishakoff, I ;
Chandra, D .
JOURNAL OF SOUND AND VIBRATION, 2006, 291 (3-5) :1255-1260
[10]  
Erdelyi A., 1953, Higher transcendental functions, V2