Chipster: user-friendly analysis software for microarray and other high-throughput data

被引:255
作者
Kallio, M. Aleksi [1 ]
Tuimala, Jarno T. [1 ,2 ]
Hupponen, Taavi [1 ]
Klemela, Petri [1 ]
Gentile, Massimiliano [1 ]
Scheinin, Ilari [3 ,4 ,5 ,6 ,7 ]
Koski, Mikko [1 ,8 ]
Kaki, Janne [1 ,8 ]
Korpelainen, Eija I. [1 ]
机构
[1] CSC IT Ctr Sci, Espoo, Finland
[2] Finnish Red Cross Blood Serv, Helsinki, Finland
[3] Vrije Univ Amsterdam, Med Ctr, Dept Pathol, Amsterdam, Netherlands
[4] Univ Helsinki, Haartman Inst, Dept Pathol, FIN-00014 Helsinki, Finland
[5] Univ Helsinki, HUSLAB, FIN-00014 Helsinki, Finland
[6] Helsinki Univ Cent Hosp, Helsinki, Finland
[7] Univ Helsinki, FIMM, FIMM Technol Ctr, FIN-00014 Helsinki, Finland
[8] Futurice, Helsinki, Finland
关键词
ARRAY CGH; GENE-EXPRESSION; AFFYMETRIX; ALGORITHM; TOOL;
D O I
10.1186/1471-2164-12-507
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The growth of high-throughput technologies such as microarrays and next generation sequencing has been accompanied by active research in data analysis methodology, producing new analysis methods at a rapid pace. While most of the newly developed methods are freely available, their use requires substantial computational skills. In order to enable non-programming biologists to benefit from the method development in a timely manner, we have created the Chipster software. Results: Chipster (http://chipster.csc.fi/) brings a powerful collection of data analysis methods within the reach of bioscientists via its intuitive graphical user interface. Users can analyze and integrate different data types such as gene expression, miRNA and aCGH. The analysis functionality is complemented with rich interactive visualizations, allowing users to select datapoints and create new gene lists based on these selections. Importantly, users can save the performed analysis steps as reusable, automatic workflows, which can also be shared with other users. Being a versatile and easily extendable platform, Chipster can be used for microarray, proteomics and sequencing data. In this article we describe its comprehensive collection of analysis and visualization tools for microarray data using three case studies. Conclusions: Chipster is a user-friendly analysis software for high-throughput data. Its intuitive graphical user interface enables biologists to access a powerful collection of data analysis and integration tools, and to visualize data interactively. Users can collaborate by sharing analysis sessions and workflows. Chipster is open source, and the server installation package is freely available.
引用
收藏
页数:14
相关论文
共 46 条
[11]   Optimized detection of differential expression in global profiling experiments: case studies in clinical transcriptomic and quantitative proteomic datasets [J].
Elo, Laura L. ;
Hiissa, Jukka ;
Tuimala, Jarno ;
Kallio, Aleksi ;
Korpelainen, Eija ;
Aittokallio, Tero .
BRIEFINGS IN BIOINFORMATICS, 2009, 10 (05) :547-555
[12]   Using GOstats to test gene lists for GO term association [J].
Falcon, S. ;
Gentleman, R. .
BIOINFORMATICS, 2007, 23 (02) :257-258
[13]   The UCSC Genome Browser database: update 2011 [J].
Fujita, Pauline A. ;
Rhead, Brooke ;
Zweig, Ann S. ;
Hinrichs, Angie S. ;
Karolchik, Donna ;
Cline, Melissa S. ;
Goldman, Mary ;
Barber, Galt P. ;
Clawson, Hiram ;
Coelho, Antonio ;
Diekhans, Mark ;
Dreszer, Timothy R. ;
Giardine, Belinda M. ;
Harte, Rachel A. ;
Hillman-Jackson, Jennifer ;
Hsu, Fan ;
Kirkup, Vanessa ;
Kuhn, Robert M. ;
Learned, Katrina ;
Li, Chin H. ;
Meyer, Laurence R. ;
Pohl, Andy ;
Raney, Brian J. ;
Rosenbloom, Kate R. ;
Smith, Kayla E. ;
Haussler, David ;
Kent, W. James .
NUCLEIC ACIDS RESEARCH, 2011, 39 :D876-D882
[14]   Alternative mapping of probes to genes for Affymetrix chips -: art. no. 111 [J].
Gautier, L ;
Moller, M ;
Friis-Hansen, L ;
Knudsen, S .
BMC BIOINFORMATICS, 2004, 5 (1)
[15]   affy -: analysis of Affymetrix GeneChip data at the probe level [J].
Gautier, L ;
Cope, L ;
Bolstad, BM ;
Irizarry, RA .
BIOINFORMATICS, 2004, 20 (03) :307-315
[16]   Bioconductor: open software development for computational biology and bioinformatics [J].
Gentleman, RC ;
Carey, VJ ;
Bates, DM ;
Bolstad, B ;
Dettling, M ;
Dudoit, S ;
Ellis, B ;
Gautier, L ;
Ge, YC ;
Gentry, J ;
Hornik, K ;
Hothorn, T ;
Huber, W ;
Iacus, S ;
Irizarry, R ;
Leisch, F ;
Li, C ;
Maechler, M ;
Rossini, AJ ;
Sawitzki, G ;
Smith, C ;
Smyth, G ;
Tierney, L ;
Yang, JYH ;
Zhang, JH .
GENOME BIOLOGY, 2004, 5 (10)
[17]   Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences [J].
Goecks, Jeremy ;
Nekrutenko, Anton ;
Taylor, James .
GENOME BIOLOGY, 2010, 11 (08)
[18]   Analyzing gene expression data in terms of gene sets:: methodological issues [J].
Goeman, Jelle J. ;
Buehlmann, Peter .
BIOINFORMATICS, 2007, 23 (08) :980-987
[19]   TOB1 Is Regulated by EGF-Dependent HER2 and EGFR Signaling, Is Highly Phosphorylated, and Indicates Poor Prognosis in Node-Negative Breast Cancer [J].
Helms, Mike W. ;
Kemming, Dirk ;
Contag, Christopher H. ;
Pospisil, Heike ;
Bartkowiak, Kai ;
Wang, Alice ;
Chang, Sheng-Yung ;
Buerger, Horst ;
Brandt, Burkhard H. .
CANCER RESEARCH, 2009, 69 (12) :5049-5056
[20]   Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer [J].
Hess, Kenneth R. ;
Anderson, Keith ;
Symmans, W. Fraser ;
Valero, Vicente ;
Ibrahim, Nuhad ;
Mejia, Jaime A. ;
Booser, Daniel ;
Theriault, Richard L. ;
Buzdar, Aman U. ;
Dempsey, Peter J. ;
Rouzier, Roman ;
Sneige, Nour ;
Ross, Jeffrey S. ;
Vidaurre, Tatiana ;
Gomez, Henry L. ;
Hortobagyi, Gabriel N. ;
Pusztai, Lajos .
JOURNAL OF CLINICAL ONCOLOGY, 2006, 24 (26) :4236-4244