Nonexistence of a [gq(5,d),5,d]q code for 3q4-4q3-2q+1 ≤ d ≤ 3q4-4q3-q

被引:3
作者
Cheon, E. J. [1 ]
Kato, T. [2 ]
Kim, S. J. [1 ,3 ]
机构
[1] Gyeongsang Natl Univ, Dept Math, Jinju 660701, South Korea
[2] Yamaguchi Univ, Dept Math Sci, Yamaguchi 7538512, Japan
[3] Gyeongsang Natl Univ, RINS, Jinju 660701, South Korea
关键词
Griesmer bound; linear code; projective space;
D O I
10.1016/j.disc.2007.08.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we shall prove that there is no [3q(4) - q(3) - q(2) - 3q - 1, 5, 3q(4) - 4q(3) - 2q + 1](q). code over the finite field F-q for q >= 11. Thus, we conclude the nonexistence of a [g(q) (5, d), 5, d](q) code for 3q(4) - 4q(3) - 2q + 1 <= d <= 3q(4) - 4q(3) - q. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:3082 / 3089
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 1998, HDB CODING THEORY
[2]  
[Anonymous], MATH JPN
[3]  
[Anonymous], MATH JAPONICA
[4]   On the minimum length of some linear codes of dimension 5 [J].
Cheon, EJ ;
Kato, T ;
Kim, SJ .
DESIGNS CODES AND CRYPTOGRAPHY, 2005, 37 (03) :421-434
[5]   Nonexistence of [n, 5, d]q codes attaining the Griesmer bound for q4-2q2-2q+1≤d≤q4-2q2-q [J].
Cheon, EJ ;
Kato, T ;
Kim, SJ .
DESIGNS CODES AND CRYPTOGRAPHY, 2005, 36 (03) :289-299
[6]   On a particular class of minihypers and its applications.: I.: The result for general q [J].
Govaerts, P ;
Storme, L .
DESIGNS CODES AND CRYPTOGRAPHY, 2003, 28 (01) :51-63
[7]  
Hill R, 1999, CH CRC RES NOTES MAT, V403, P127
[8]  
HILL R, 1992, CRYPTOGRAPHY CODING, V2, P75
[9]  
Hirschfeld J. W. P., 1998, PROJECTIVE GEOMETRIE
[10]  
LANDGEV I, 1995, P INT WORKSH OPT COD, P108