The single-end invasion: An asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination

被引:539
作者
Hunter, N [1 ]
Kleckner, N [1 ]
机构
[1] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
关键词
D O I
10.1016/S0092-8674(01)00430-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We identify a novel meiotic recombination intermediate, the single-end invasion (SEI), which occurs during the transition from double-strand breaks (DSBs) to double-Holliday junction (dHJs). SEIs are products of strand exchange between one DSB end and its homolog. The structural asymmetry of SEIs indicates that the two ends of a DSB interact with the homolog in temporal succession, via structurally (and thus biochemically) distinct processes. SEIs arise surprisingly late in prophase, concomitant with synaptonemal complex (SC) formation. These and other data imply that SEIs are preceded by nascent DSB-partner intermediates, which then undergo selective differentiation into crossover and noncrossover types, with SC formation and strand exchange as downstream consequences. Late occurrence of strand exchange provides opportunity to reverse recombinational fate even after homologs are coaligned and/or synapsed. This feature can explain crossover suppression between homeologous and structurally heterozygous chromosomes.
引用
收藏
页码:59 / 70
页数:12
相关论文
共 55 条
[1]   ANALYSIS OF WILD-TYPE AND RAD50 MUTANTS OF YEAST SUGGESTS AN INTIMATE-RELATIONSHIP BETWEEN MEIOTIC CHROMOSOME SYNAPSIS AND RECOMBINATION [J].
ALANI, E ;
PADMORE, R ;
KLECKNER, N .
CELL, 1990, 61 (03) :419-436
[2]   SYNAPTONEMAL COMPLEX SPREADING IN ALLIUM-CEPA AND ALLIUM-FISTULOSUM - .1. THE INITIATION AND SEQUENCE OF PAIRING [J].
ALBINI, SM ;
JONES, GH .
CHROMOSOMA, 1987, 95 (05) :324-338
[3]   Differential timing and control of noncrossover and crossover recombination during meiosis [J].
Allers, T ;
Lichten, M .
CELL, 2001, 106 (01) :47-57
[4]  
Allers T, 2000, Nucleic Acids Res, V28, pe6, DOI 10.1093/nar/28.2.e6
[5]   Sister chromatid-based DNA repair is mediated by RAD54, not by DMC1 or TID1 [J].
Arbel, A ;
Zenvirth, D ;
Simchen, G .
EMBO JOURNAL, 1999, 18 (09) :2648-2658
[6]   Clustering of meiotic double-strand breaks on yeast chromosome III [J].
Baudat, F ;
Nicolas, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) :5213-5218
[7]   HOMOLOGOUS ASSOCIATION OF CHROMOSOMAL DNA DURING YEAST MEIOSIS [J].
BELL, LR ;
BYERS, B .
COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1982, 47 :829-840
[8]   ONE-SIDED INVASION EVENTS IN HOMOLOGOUS RECOMBINATION AT DOUBLE-STRAND BREAKS [J].
BELMAAZA, A ;
CHARTRAND, P .
MUTATION RESEARCH, 1994, 314 (03) :199-208
[9]   An atypical topoisomerase II from archaea with implications for meiotic recombination [J].
Bergerat, A ;
deMassy, B ;
Gadelle, D ;
Varoutas, PC ;
Nicolas, A ;
Forterre, P .
NATURE, 1997, 386 (6623) :414-417
[10]   High copy number suppression of the meiotic arrest caused by a dmc1 mutation:: REC114 imposes an early recombination block and RAD54 promotes a DMC1-independent DSB repair pathway [J].
Bishop, DK ;
Nikolski, Y ;
Oshiro, J ;
Chon, J ;
Shinohara, M ;
Chen, X .
GENES TO CELLS, 1999, 4 (08) :425-443