Elimination of ringing artifacts by finite-element projection in FFT-based homogenization

被引:7
作者
Leute, Richard J. [1 ]
Ladecky, Martin [2 ]
Falsafi, Ali [3 ]
Joedicke, Indre [1 ,4 ]
Pultarova, Ivana [2 ]
Zeman, Jan [2 ]
Junge, Till [3 ]
Pastewka, Lars [1 ,4 ]
机构
[1] Univ Freiburg, Dept Microsyst Engn, Georges Kohler Allee 103, D-79110 Freiburg, Germany
[2] Czech Tech Univ, Fac Civil Engn, Thakurova 7, Prague 16629 6, Czech Republic
[3] Ecole Polytech Fed Lausanne, Dept Mech Engn, CH-1015 Lausanne, Switzerland
[4] Univ Freiburg, Freiburg Ctr Interact Mat & Bioinspired Technol, Cluster Excellence LivMatS, Georges Kohler Allee 105, D-79110 Freiburg, Germany
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
Micromechanical homogenization; Finite-element method; Fast Fourier transform; Preconditioning; FOURIER-BASED SCHEMES; NUMERICAL-METHOD; ELLIPSOIDAL INCLUSION; ELASTIC FIELD; SOLVERS; IMPLEMENTATION; COMPOSITES;
D O I
10.1016/j.jcp.2021.110931
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Micromechanical homogenization is often carried out with Fourier-accelerated methods that are prone to ringing artifacts. We here generalize the compatibility projection introduced by Vond.rejc et al. (2014) [24] beyond the Fourier basis. In particular, we formulate the compatibility projection for linear finite elements while maintaining Fourier-acceleration and the fast convergence properties of the original method. We demonstrate that this eliminates ringing artifacts and yields an efficient computational homogenization scheme that is equivalent to canonical finite-element formulations on fully structured grids. (C) 2021 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:20
相关论文
共 50 条