Global well-posedness for the 2D incompressible four-component chemotaxis-Navier-Stokes equations

被引:13
作者
Zhang, Qian [1 ]
Wang, Peiguang [1 ]
机构
[1] Hebei Univ, Sch Math & Informat Sci, Hebei Key Lab Machine Learning & Computat Intelli, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
Chemotaxis equations; Navier-Stokes equations; Global well-posedness; BLOW-UP; SPERM-ATTRACTANT; CHEMICAL-ASPECTS; WEAK SOLUTIONS; SYSTEM; MODEL; EXISTENCE; MASS; STABILIZATION; AGGREGATION;
D O I
10.1016/j.jde.2020.01.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The four-component chemotaxis-Navier-Stokes system {n(t) + u . Delta(n) - del. (n del c) - nm, c(t) + u . del c = Delta c - c + m, m(t) + u . del m = Delta m - nm, u(t) + (u . del)u + del P = Delta u + (n + m)del phi, del . u = 0, is considered in R-2. By using Fourier localization technique and the structure of equations, we obtain the existence and uniqueness of weak solutions for the above system for a large class of initial data. (C) 2020 The Authors. Published by Elsevier Inc.
引用
收藏
页码:1656 / 1692
页数:37
相关论文
共 50 条
  • [41] Global well-posedness of 2D incompressible Navier-Stokes-Darcy flow in a type of generalized time-dependent porosity media
    Tan, Linlin
    Cheng, Bianru
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (10): : 5649 - 5681
  • [42] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Li, Jinlu
    Yin, Zhaoyang
    Zhai, Xiaoping
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (05) : 2131 - 2148
  • [43] Global well-posedness of coupled Navier-Stokes and Darcy equations
    Cui, Meiying
    Dong, Wenchao
    Guo, Zhenhua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 388 : 82 - 111
  • [44] Global well-posedness of the Navier-Stokes-omega equations
    Fan, Jishan
    Zhou, Yong
    APPLIED MATHEMATICS LETTERS, 2011, 24 (11) : 1915 - 1918
  • [45] Global well-posedness for the incompressible Navier Stokes equations with density-dependent viscosity coefficient
    Zhang, Jianwen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (05) : 1722 - 1742
  • [46] GLOBAL EXISTENCE OF ALMOST ENERGY SOLUTION TO THE TWO-DIMENSIONAL CHEMOTAXIS-NAVIER-STOKES EQUATIONS WITH PARTIAL DIFFUSION
    Meng, Laiqing
    Yuan, Jia
    Zheng, Xiaoxin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (06) : 3413 - 3441
  • [47] Global well-posedness and interior regularity of 2D Navier-Stokes equations with stochastic boundary conditions
    Agresti, Antonio
    Luongo, Eliseo
    MATHEMATISCHE ANNALEN, 2024, 390 (02) : 2727 - 2766
  • [48] 2D stochastic Chemotaxis-Navier-Stokes system
    Zhai, Jianliang
    Zhang, Tusheng
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 138 : 307 - 355
  • [49] Global well-posedness and decay of the 2D incompressible MHD equations with horizontal magnetic diffusion
    Lin, Hongxia
    Zhang, Heng
    Liu, Sen
    Sun, Qing
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (07)
  • [50] Global Well-Posedness for the 2D Keller-Segel-Navier-Stokes System with Fractional Diffusion
    Wang, Chaoyong
    Jia, Qi
    Zhang, Qian
    ACTA APPLICANDAE MATHEMATICAE, 2024, 194 (01)