Global well-posedness for the 2D incompressible four-component chemotaxis-Navier-Stokes equations

被引:13
|
作者
Zhang, Qian [1 ]
Wang, Peiguang [1 ]
机构
[1] Hebei Univ, Sch Math & Informat Sci, Hebei Key Lab Machine Learning & Computat Intelli, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
Chemotaxis equations; Navier-Stokes equations; Global well-posedness; BLOW-UP; SPERM-ATTRACTANT; CHEMICAL-ASPECTS; WEAK SOLUTIONS; SYSTEM; MODEL; EXISTENCE; MASS; STABILIZATION; AGGREGATION;
D O I
10.1016/j.jde.2020.01.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The four-component chemotaxis-Navier-Stokes system {n(t) + u . Delta(n) - del. (n del c) - nm, c(t) + u . del c = Delta c - c + m, m(t) + u . del m = Delta m - nm, u(t) + (u . del)u + del P = Delta u + (n + m)del phi, del . u = 0, is considered in R-2. By using Fourier localization technique and the structure of equations, we obtain the existence and uniqueness of weak solutions for the above system for a large class of initial data. (C) 2020 The Authors. Published by Elsevier Inc.
引用
收藏
页码:1656 / 1692
页数:37
相关论文
共 50 条
  • [21] GLOBAL WELL-POSEDNESS FOR THE 3-D INCOMPRESSIBLE ANISOTROPIC ROTATING NAVIER-STOKES EQUATIONS
    Liu, Yuhui
    Niu, Dongjuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (03): : 1380 - 1401
  • [22] On the global well-posedness for the 3D axisymmetric incompressible Keller–Segel–Navier–Stokes equations
    Qiang Hua
    Qian Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [23] Global well-posedness of incompressible Navier-Stokes equations with two slow variables
    Weimin Peng
    Yi Zhou
    Chinese Annals of Mathematics, Series B, 2017, 38 : 787 - 794
  • [24] Global well-posedness of a Navier-Stokes-Cahn-Hilliard system with chemotaxis and singular potential in 2D
    He, Jingning
    Wu, Hao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 297 : 47 - 80
  • [25] Global Well-Posedness of Incompressible Navier-Stokes Equations with Two Slow Variables
    Weimin PENG
    Yi ZHOU
    ChineseAnnalsofMathematics,SeriesB, 2017, (03) : 787 - 794
  • [26] Global Well-Posedness of 2D Compressible Navier-Stokes Equations with Large Data and Vacuum
    Jiu, Quansen
    Wang, Yi
    Xin, Zhouping
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2014, 16 (03) : 483 - 521
  • [27] GLOBAL WELL-POSEDNESS OF 2D COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH LARGE DATA AND VACUUM
    Jiu, Quansen
    Wang, Yi
    Xin, Zhouping
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 701 - 708
  • [28] Global well-posedness for 2D fractional inhomogeneous Navier-Stokes equations with rough density
    Li, Yatao
    Miao, Qianyun
    Xue, Liutang
    NONLINEARITY, 2023, 36 (07) : 3866 - 3908
  • [29] GLOBAL WELL-POSEDNESS OF 2D INCOMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH HORIZONTAL DISSIPATION
    Suo, Xiaoxiao
    Jiu, Quansen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (09) : 4523 - 4553
  • [30] Well-posedness and dynamics of 2D Navier-Stokes equations with moving boundary
    Chang, Qingquan
    Li, Dandan
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (02)