Global well-posedness for the 2D incompressible four-component chemotaxis-Navier-Stokes equations

被引:13
|
作者
Zhang, Qian [1 ]
Wang, Peiguang [1 ]
机构
[1] Hebei Univ, Sch Math & Informat Sci, Hebei Key Lab Machine Learning & Computat Intelli, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
Chemotaxis equations; Navier-Stokes equations; Global well-posedness; BLOW-UP; SPERM-ATTRACTANT; CHEMICAL-ASPECTS; WEAK SOLUTIONS; SYSTEM; MODEL; EXISTENCE; MASS; STABILIZATION; AGGREGATION;
D O I
10.1016/j.jde.2020.01.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The four-component chemotaxis-Navier-Stokes system {n(t) + u . Delta(n) - del. (n del c) - nm, c(t) + u . del c = Delta c - c + m, m(t) + u . del m = Delta m - nm, u(t) + (u . del)u + del P = Delta u + (n + m)del phi, del . u = 0, is considered in R-2. By using Fourier localization technique and the structure of equations, we obtain the existence and uniqueness of weak solutions for the above system for a large class of initial data. (C) 2020 The Authors. Published by Elsevier Inc.
引用
收藏
页码:1656 / 1692
页数:37
相关论文
共 50 条