Algebraic differential independence concerning the Euler Γ-function and Dirichlet series

被引:2
作者
Chen, Wei [1 ]
Wang, Qiong [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Sci, Chongqing 400065, Peoples R China
关键词
Gamma function; Script capital L-functions; algebraic differential independence; algebraic differential equations; RIEMANN ZETA-FUNCTION; HOLDER'S THEOREM; EQUATIONS;
D O I
10.1007/s10473-020-0411-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article investigates the algebraic differential independence concerning the Euler Gamma-funciton and the function F in a certain class F which contains Dirichlet L-functions, L-functions in the extended Selberg class, or some periodic functions. We prove that the Euler and the function F cannot satisfy any nontrivial algebraic differential equations whose coefficients are meromorphic functions phi with rho(phi) < 1.
引用
收藏
页码:1035 / 1044
页数:10
相关论文
共 32 条
[1]  
Bank S., 1976, Funkcial Ekvac, V19, P53
[2]  
Boltovskoi D M, 1914, IZV POLITEKH I WARSA, V2, P1
[3]   Difference independence of the Riemann zeta function [J].
Chiang, Yik-Man ;
Feng, Shao-Ji .
ACTA ARITHMETICA, 2006, 125 (04) :317-329
[4]   Independence of Artin L-functions [J].
Cimpoeas, Mircea ;
Nicolae, Florin .
FORUM MATHEMATICUM, 2019, 31 (02) :529-534
[5]  
Gross F, 1998, COMPLEX VARIABLES TH, V37, P243, DOI [10.1080/17476939808815136, DOI 10.1080/17476939808815136]
[6]  
Han Q, ARXIV181109336V2
[7]  
Han Q, ARXIV181104188V1
[8]   Holder ' s theorem on Gamma(x) [J].
Hausdorff, F .
MATHEMATISCHE ANNALEN, 1925, 94 :244-247
[10]  
Hilbert D., 1901, ARCH MATH PHYS, V1, P213