OSCILLATION CRITERIA OF THIRD-ORDER NONLINEAR NEUTRAL DELAY DIFFERENCE EQUATIONS WITH NONCANONICAL OPERATORS

被引:2
|
作者
Ayyappan, G. [1 ]
Chatzarakis, G. E. [2 ]
Gopal, T. [3 ]
Thandapani, E. [4 ]
机构
[1] Periyar Univ, Dept Math, Coll Arts & Sci, Pappireddipatti 636905, Tamil Nadu, India
[2] Sch Pedag & Technol Educ, Dept Elect & Elect Engn Educ, Athens 15122, Greece
[3] Periyar Univ, Dept Math, Salem, Tamil Nadu, India
[4] Univ Madras, Ramanujan Inst Adv Study Math, Chennai 600005, Tamil Nadu, India
关键词
Nonlinear difference equation; Third-order; Neutral; Noncanonical Operators; Oscillation;
D O I
10.2298/AADM200913011A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present some new oscillation criteria for nonlinear neutral difference equations of the form Delta(b(n)Delta(a(n)Delta z(n))) + q(n)x(alpha)(sigma(n)) = 0 where z(n) = x(n) + p(n)x (T (n)) , alpha > 0, b(n) > 0, a(n) > 0, q(n) >= 0 and p(n) > 1. By summation averaging technique, we establish new criteria for the oscillation of all solutions of the studied difference equation above. We present four examples to show the strength of the new obtained results.
引用
收藏
页码:413 / 425
页数:13
相关论文
共 50 条
  • [41] Oscillation criteria for third-order neutral differential equations with unbounded neutral coefficients and distributed deviating arguments
    Sun, Yibing
    Zhao, Yige
    Xie, Qiangqiang
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (03) : 1099 - 1112
  • [42] Oscillation for third-order nonlinear delay dynamic equations on time scales
    Liu, Shouhua
    Zhang, Quanxin
    Gao, Li
    SENSORS, MEASUREMENT AND INTELLIGENT MATERIALS II, PTS 1 AND 2, 2014, 475-476 : 1578 - 1582
  • [43] Oscillation criteria for certain third-order delay dynamic equations
    Jiashan Yang
    Advances in Difference Equations, 2013
  • [44] New oscillation criteria for second-order nonlinear neutral delay difference equations
    Saker, SH
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 142 (01) : 99 - 111
  • [45] Oscillation results for higher order nonlinear neutral delay difference equations
    Yildiz, M. K.
    Ocalan, O.
    APPLIED MATHEMATICS LETTERS, 2007, 20 (03) : 243 - 247
  • [46] OSCILLATION CRITERIA FOR THIRD ORDER NONLINEAR DELAY DIFFERENTIAL EQUATIONS WITH DAMPING
    Grace, Said R.
    OPUSCULA MATHEMATICA, 2015, 35 (04) : 485 - 497
  • [47] Oscillation of third-order neutral differential equations with oscillatory operator
    Bartusek, Miroslav
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (08) : 3069 - +
  • [48] New criteria for the oscillation of a class of third-order quasilinear delay differential equations
    Alqahtani, Zuhur
    Ben Saud, Insaf F.
    Almuneef, Areej
    Qaraad, Belgees
    Ramos, Higinio
    AIMS MATHEMATICS, 2025, 10 (02): : 4205 - 4225
  • [49] Hille and Nehari-Type Oscillation Criteria for Third-Order Emden–Fowler Neutral Delay Dynamic Equations
    Yizhuo Wang
    Zhenlai Han
    Shurong Sun
    Ping Zhao
    Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40 : 1187 - 1217
  • [50] Oscillation of Second-Order Nonlinear Neutral Dynamic Equations with Noncanonical Operators
    Chenghui Zhang
    Ravi P. Agarwal
    Martin Bohner
    Tongxing Li
    Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38 : 761 - 778