In this article we introduce a new algebraic structure of Jordan type and we show several examples. This new structure, called "quasi-Jordan algebras," appears in the study of the product where x,y are elements in a dialgebra (D, (sic), proves). The quasi-Jordan algebras are a generalization of Jordan algebras where the commutative law is changed by a quasi-commutative identity and a special form of the Jordan identity is retained. We show a few results about the relationship between Jordan algebras and quasi-Jordan algebras. Also, we compare quasi-Jordan algebras with some structures. In particular, we find a special relation with Leibniz algebras. We attach a quasi-Jordan algebra to any ad-nilpotent element of index of nilpotence at most 3 in a Leibniz algebra.
机构:
Univ Nova Lisboa, Fac Sci & Technol, Ctr Math & Applicat, P-2829516 Monte De Caparica, Caparica, Portugal
Polytech Inst Tomar, Managing Sch, P-2300313 Quinta Do Contador, Tomar, PortugalUniv Nova Lisboa, Fac Sci & Technol, Ctr Math & Applicat, P-2829516 Monte De Caparica, Caparica, Portugal
Covas, Ricardo
Mexia, Joao Tiago
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nova Lisboa, Fac Sci & Technol, Ctr Math & Applicat, P-2829516 Monte De Caparica, Caparica, PortugalUniv Nova Lisboa, Fac Sci & Technol, Ctr Math & Applicat, P-2829516 Monte De Caparica, Caparica, Portugal
Mexia, Joao Tiago
Zmyslony, Roman
论文数: 0引用数: 0
h-index: 0
机构:
Univ Opole, Inst Math & Comp Sci, PL-45052 Opole, Poland
Univ Zielona Gora, Fac Math Comp Sci & Econometr, PL-65246 Zielona Gora, PolandUniv Nova Lisboa, Fac Sci & Technol, Ctr Math & Applicat, P-2829516 Monte De Caparica, Caparica, Portugal