Short-term electricity price forecasting and classification in smart grids using optimized multikernel extreme learning machine

被引:32
|
作者
Bisoi, Ranjeeta [1 ]
Dash, P. K. [1 ]
Das, Pragyan P. [2 ]
机构
[1] Siksha O Anusandhan Univ, Multidisciplinary Res Cell, Bhubaneswar, India
[2] Orissa Engn Coll, Bhubaneswar, India
关键词
Electricity price forecasting and classification; Extreme learning machine; Kernel extreme learning machine; Kernel functions; Price thresholds; Mutated water cycle algorithm; WATER CYCLE ALGORITHM; NEURAL-NETWORK; WAVELET TRANSFORM; MODEL; REGRESSION; VECTOR;
D O I
10.1007/s00521-018-3652-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Short-term electricity price forecasting in deregulated electricity markets has been studied extensively in recent years but without significant reduction in price forecasting errors. Also demand-side management and short-term scheduling operations in smart grids do not require strictly very accurate forecast and can be executed with certain practical price thresholds. This paper, therefore, presents a multikernel extreme learning machine (MKELM) for both short-term electricity price forecasting and classification according to some prespecified price thresholds. The kernel ELM does not require the hidden layer mapping function to be known and produces robust prediction and classification in comparison with the conventional ELM using random weights between the input and hidden layers. Further in the MKELM formulation, the linear combination of the weighted kernels is optimized using vaporization precipitation-based water cycle algorithm (WCA) to produce significantly accurate electricity price prediction and classification. The combination of MKELM and WCA is named as WCA-MKELM in this work. To validate the effectiveness of the proposed approach, three electricity markets, namely PJM, Ontario and New South Wales, are considered for electricity price forecasting and classification producing fairly accurate results.
引用
收藏
页码:1457 / 1480
页数:24
相关论文
共 50 条
  • [21] Application of Extreme Learning Machine-Autoencoder to Medium Term Electricity Price Forecasting
    Najafi, Arsalan
    Homaee, Omid
    Jasinski, Michal
    Golshan, Mahdi
    Leonowicz, Zbigniew
    2022 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2022 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2022,
  • [22] Application of Extreme Learning Machine- Autoencoder to Medium Term Electricity Price Forecasting
    Najafi, Arsalan
    Homaee, Omid
    Golshan, Mehdi
    Jasinski, Michal
    Leonowicz, Zbigniew
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2023, 59 (06) : 7214 - 7223
  • [23] HIRA Model for Short-Term Electricity Price Forecasting
    Cerjan, Marin
    Petricic, Ana
    Delimar, Marko
    ENERGIES, 2019, 12 (03)
  • [24] Short-term load forecasting in smart grids using artificial intelligence methods: A survey
    Salehimehr, Sirus
    Taheri, Behrooz
    Sedighizadeh, Mostafa
    JOURNAL OF ENGINEERING-JOE, 2022, 12 (1133-1142): : 1133 - 1142
  • [25] Short-Term Load Forecasting Based on Improved Extreme Learning Machine
    Li, Jie
    Song, Zhongyou
    Zhong, Yuanhong
    Zhang, Zhaoyuan
    Li, Jianhong
    2017 IEEE 2ND INTERNATIONAL CONFERENCE ON BIG DATA ANALYSIS (ICBDA), 2017, : 584 - 588
  • [26] Short-Term Electricity Price Forecasting with a Composite Fundamental-Econometric Hybrid Methodology
    de Marcos, Rodrigo A.
    Bello, Antonio
    Reneses, Javier
    ENERGIES, 2019, 12 (06)
  • [27] SHORT TERM ELECTRICITY PRICE FORECASTING USING NEURAL NETWORK
    Azmira, Intan W. A. R.
    Rahman, T. K. A.
    Zakaria, Z.
    Ahmad, Arfah
    COMPUTING & INFORMATICS, 4TH INTERNATIONAL CONFERENCE, 2013, 2013, : 103 - 108
  • [28] Short-term water demand forecasting using machine learning techniques
    Antunes, A.
    Andrade-Campos, A.
    Sardinha-Lourenco, A.
    Oliveira, M. S.
    JOURNAL OF HYDROINFORMATICS, 2018, 20 (06) : 1343 - 1366
  • [29] Extreme Learning Machine for Short and Mid-term Electricity Spot Prices Forecasting
    Teixeira, I. M.
    Barroso, A. P.
    Marques, T.
    2021 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEE IEEM21), 2021, : 452 - 456
  • [30] Using extreme learning machines for short-term urban water demand forecasting
    Mouatadid, Soukayna
    Adamowski, Jan
    URBAN WATER JOURNAL, 2017, 14 (06) : 630 - 638