Effect of temperature, pressure, and cosolvents on structural and dynamic properties of the hydration shell of SNase: A molecular dynamics computer simulation study

被引:36
作者
Smolin, Nikolai [1 ]
Winter, Roland [1 ]
机构
[1] Univ Dortmund, Dept Chem, D-44227 Dortmund, Germany
关键词
D O I
10.1021/jp076440v
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It is now generally agreed that the hydration water and solvational properties play a crucial role in determining the dynamics and hence the functionality of proteins. We present molecular dynamics computer simulation studies on staphylococcal nuclease (SNase) at various temperatures and pressures as well as in different cosolvent solutions containing various concentrations of urea and glycerol. The aim is to provide a molecular level understanding of how different types of cosolvents (chaotropic and kosmotropic) as well as temperature and high hydrostatic pressure modify the structure and dynamics of the hydration water. Taken together, these three intrinsic thermodynamic variables, temperature, pressure, and chemical potential (or activity) of the solvent, are able to influence the stability and function of the protein by protein-solvent dynamic coupling in different ways. A detailed analysis of the structural and dynamical properties of the water and cosolvents at the protein surface (density profile, coordination numbers, hydrogen-bond distribution, average H-bond lifetimes (water-protein and water-water), and average residence time of water in the hydration shell) was carried out, and differences in the structural and dynamical properties of the hydration water in the presence of the different cosolvents and at temperatures between 300 and 400 K and pressures up to 5000 bar are discussed. Furthermore, the results obtained help understand various thermodynamic properties measured for the protein.
引用
收藏
页码:997 / 1006
页数:10
相关论文
共 72 条
[1]   Water dynamics in the hydration layer around proteins and micelles [J].
Bagchi, B .
CHEMICAL REVIEWS, 2005, 105 (09) :3197-3219
[2]   Atomistic simulation study of the coupled motion of amino acid residues and water molecules around protein HP-36: Fluctuations at and around the active sites [J].
Bandyopadhyay, S ;
Chakraborty, S ;
Balasubramanian, S ;
Pal, S ;
Bagchi, B .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (33) :12608-12616
[3]   Proteins in mixed solvents: A molecular-level perspective [J].
Baynes, BM ;
Trout, BL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (50) :14058-14067
[4]   Counteraction of urea-induced protein denaturation by trimethylamine N-oxide:: A chemical chaperone at atomic resolution [J].
Bennion, BJ ;
Daggett, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (17) :6433-6438
[5]   The molecular basis for the chemical denaturation of proteins by urea [J].
Bennion, BJ ;
Daggett, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :5142-5147
[6]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[7]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[8]   Molecular dynamics of water at the protein-solvent interface [J].
Bizzarri, AR ;
Cannistraro, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (26) :6617-6633
[9]   Hydrogen bond analysis by MD simulation of copper plastocyanin at different hydration levels [J].
Bizzarri, AR ;
Wang, CX ;
Chen, WZ ;
Cannistraro, S .
CHEMICAL PHYSICS, 1995, 201 (2-3) :463-472
[10]   THERMODYNAMICS OF PROTEIN DENATURATION .3. DENATURATION OF RIBONUCLEASE IN WATER AND IN AQUEOUS UREA AND AQUEOUS ETHANOL MIXTURES [J].
BRANDTS, JF ;
HUNT, L .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1967, 89 (19) :4826-&