Topological states in multi-orbital HgTe honeycomb lattices

被引:56
作者
Beugeling, W. [1 ]
Kalesaki, E. [2 ,3 ]
Delerue, C. [2 ]
Niquet, Y. -M. [4 ,5 ]
Vanmaekelbergh, D. [6 ]
Smith, C. Morais [7 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] ISEN, IEMN Dept, UMR CNRS 8520, F-59046 Lille, France
[3] Univ Luxembourg, Phys & Mat Sci Res Unit, L-1511 Luxembourg, Luxembourg
[4] Univ Grenoble Alpes, INAC, SP2M, L Sim, F-38054 Grenoble, France
[5] CEA, INAC, SP2M, L Sim, F-38054 Grenoble, France
[6] Univ Utrecht, Debye Inst Nanomat Sci, NL-3584 CC Utrecht, Netherlands
[7] Univ Utrecht, Ctr Extreme Matter & Emergent Phenomena, Inst Theoret Phys, NL-3584 CE Utrecht, Netherlands
关键词
MASSLESS DIRAC FERMIONS; QUANTUM; TRANSITION; SILICON;
D O I
10.1038/ncomms7316
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Research on graphene has revealed remarkable phenomena arising in the honeycomb lattice. However, the quantum spin Hall effect predicted at the K point could not be observed in graphene and other honeycomb structures of light elements due to an insufficiently strong spin-orbit coupling. Here we show theoretically that 2D honeycomb lattices of HgTe can combine the effects of the honeycomb geometry and strong spin-orbit coupling. The conduction bands, experimentally accessible via doping, can be described by a tight-binding lattice model as in graphene, but including multi-orbital degrees of freedom and spin-orbit coupling. This results in very large topological gaps (up to 35 meV) and a flattened band detached from the others. Owing to this flat band and the sizable Coulomb interaction, honeycomb structures of HgTe constitute a promising platform for the observation of a fractional Chern insulator or a fractional quantum spin Hall phase.
引用
收藏
页数:7
相关论文
共 52 条
[1]   Tight-binding calculations of the optical properties of HgTe nanocrystals [J].
Allan, Guy ;
Delerue, Christophe .
PHYSICAL REVIEW B, 2012, 86 (16)
[2]   Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots [J].
Banin, U ;
Cao, YW ;
Katz, D ;
Millo, O .
NATURE, 1999, 400 (6744) :542-544
[3]   TOPOLOGICAL FLAT BAND MODELS AND FRACTIONAL CHERN INSULATORS [J].
Bergholtz, Emil J. ;
Liu, Zhao .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2013, 27 (24)
[4]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[5]   Topological phases in a two-dimensional lattice: Magnetic field versus spin-orbit coupling [J].
Beugeling, W. ;
Goldman, N. ;
Smith, C. Morais .
PHYSICAL REVIEW B, 2012, 86 (07)
[6]   Observation of the fractional quantum Hall effect in graphene [J].
Bolotin, Kirill I. ;
Ghahari, Fereshte ;
Shulman, Michael D. ;
Stormer, Horst L. ;
Kim, Philip .
NATURE, 2009, 462 (7270) :196-199
[7]   Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices [J].
Boneschanscher, M. P. ;
Evers, W. H. ;
Geuchies, J. J. ;
Altantzis, T. ;
Goris, B. ;
Rabouw, F. T. ;
van Rossum, S. A. P. ;
van der Zant, H. S. J. ;
Siebbeles, L. D. A. ;
Van Tendeloo, G. ;
Swart, I. ;
Hilhorst, J. ;
Petukhov, A. V. ;
Bals, S. ;
Vanmaekelbergh, D. .
SCIENCE, 2014, 344 (6190) :1377-1380
[8]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[9]   Calculations of the electron-energy-loss spectra of silicon nanostructures and porous silicon [J].
Delerue, C ;
Lannoo, M ;
Allan, G .
PHYSICAL REVIEW B, 1997, 56 (23) :15306-15313
[10]   Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene [J].
Du, Xu ;
Skachko, Ivan ;
Duerr, Fabian ;
Luican, Adina ;
Andrei, Eva Y. .
NATURE, 2009, 462 (7270) :192-195