Dynamics and bifurcations of a discrete-time Lotka-Volterra model using nonstandard finite difference discretization method

被引:70
作者
Eskandari, Zohreh [1 ]
Avazzadeh, Zakieh [2 ]
Ghaziani, Reza Khoshsiar [3 ]
Li, Bo [4 ]
机构
[1] Fasa Univ, Fac Sci, Dept Math, Fasa, Iran
[2] Univ South Africa, Dept Math Sci, Florida, South Africa
[3] Shahrekord Univ, Dept Math Sci, Shahrekord, Iran
[4] Anhui Univ Finance & Econ, Sch Finance, Bengbu 233030, Anhui, Peoples R China
关键词
bifurcation; chaos; Lotka-Volterra model; nonstandard finite difference method; normal form coefficient; PREDATOR-PREY SYSTEM; NEIMARK-SACKER BIFURCATION; STABILITY; CHAOS;
D O I
10.1002/mma.8859
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A newly disclosed nonstandard finite difference method has been used to discretize a Lotka-Volterra model to investigate the critical normal form coefficients of bifurcations for both one-parameter and two-parameter bifurcations. The discrete-time prey-predator model exhibits a variety of local bifurcations such as period-doubling, Neimark-Sacker, and strong resonances. Critical normal form coefficients are determined to reveal dynamical scenarios corresponding to each bifurcation point. We also investigate the complex dynamics of the model numerically by Matlab package using MatcotM based on numerical continuation technique. The numerical continuation validates the theoretical analysis, which is discussed from an ecological perspective.
引用
收藏
页数:16
相关论文
共 39 条
  • [1] Non-standard discretization methods for some biological models
    Al-Kahby, H
    Dannan, F
    Elaydi, S
    [J]. APPLICATIONS OF NONSTANDARD FINITE DIFFERENCE SCHEMES, 2000, : 155 - 180
  • [2] Codimension two bifurcations of discrete Bonhoeffer-van der Pol oscillator model
    Alidousti, J.
    Eskandari, Z.
    Fardi, M.
    Asadipour, M.
    [J]. SOFT COMPUTING, 2021, 25 (07) : 5261 - 5276
  • [3] Generic and symmetric bifurcations analysis of a three dimensional economic model
    Alidousti, J.
    Eskandari, Z.
    Avazzadeh, Z.
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 140
  • [4] Alidousti J., 2021, MATH METHODS APPL SC, P1
  • [5] BIFURCATION AND CHAOS IN A DISCRETE TIME PREDATOR-PREY SYSTEM OF LESLIE TYPE WITH GENERALIZED HOLLING TYPE III FUNCTIONAL RESPONSE
    Atabaigi, Ali
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (02): : 411 - 426
  • [6] Elabbasy E., 2007, International Journal of Nonlinear Science, V4, P171
  • [7] Qualitative properties and bifurcations of discrete-time Bazykin-Berezovskaya predator-prey model
    Elsadany, A. A.
    Din, Qamar
    Salman, S. M.
    [J]. INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2020, 13 (06)
  • [8] Dynamics and bifurcations of a discrete-time prey-predator model with Allee effect on the prey population
    Eskandari, Z.
    Alidousti, J.
    Avazzadeh, Z.
    Machado, J. A. Tenreiro
    [J]. ECOLOGICAL COMPLEXITY, 2021, 48
  • [9] Eskandari Z., 2021, INT J DYN CONTROL, V9, P275, DOI [10.1007/s40435-020-00637-8, DOI 10.1007/S40435-020-00637-8]
  • [10] Codimension-One and -Two Bifurcations of a Three-Dimensional Discrete Game Model
    Eskandari, Zohreh
    Alidousti, Javad
    Ghaziani, Reza Khoshsiar
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (02):