Asymptotic prime divisors of torsion-free symmetric powers of modules

被引:3
作者
Katz, Daniel [1 ]
Rice, Glenn [2 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[2] Missouri Western State Univ, Dept Comp Sci Math & Phys, St Joseph, MO 64507 USA
关键词
prime divisor; integral closure; Rees ring; Rees valuation;
D O I
10.1016/j.jalgebra.2007.10.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a Noetherian ring, F := R-r and M subset of F a submodule of rank r. Let (A*) over bar (M) denote the stable value of Ass(F-n/M-n), for n large, where Fu is the nth symmetric power of F-n and M, is the image of the nth symmetric power of M in Fn. We provide a number of characterizations for a prime ideal to belong to (A*) over bar (M). We also show that (A*) over bar (M) subset of (A*) over bar (M), where (A*) over bar (M) denotes the stable value of Ass(F-n/M-n). (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2209 / 2234
页数:26
相关论文
共 14 条
[1]   What is the Rees algebra of a module? [J].
Eisenbud, D ;
Huneke, C ;
Ulrich, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (03) :701-708
[3]   PRIME IDEALS ASSOCIATED TO SYMMETRICAL POWERS OF A MODULE [J].
KATZ, D ;
NAUDE, C .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (12) :4549-4555
[4]  
Matsumura H., 1986, COMMUTATIVE RING THE
[5]  
MCADAM S, 1983, LECT NOTES MATH, V1023, P1
[6]   The Rees valuations of a module over a two-dimensional regular local ring [J].
Mohan, R .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (04) :1515-1532
[7]  
Nagata M., 1962, Local Rings, Interscience Tracts in Mathematics, 13
[9]  
RATLIFF LJ, 1976, MICH MATH J, V23, P337
[10]   REDUCTION OF MODULES [J].
REES, D .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1987, 101 :431-449