Cuspidal sln-modules and deformations of certain Brauer tree algebras

被引:9
作者
Mazorchuk, Volodymyr [1 ]
Stroppel, Catharina [2 ]
机构
[1] Uppsala Univ, Dept Math, SE-47106 Uppsala, Sweden
[2] Univ Bonn, Math Zentrum, D-53115 Bonn, Germany
基金
瑞典研究理事会;
关键词
Weight module; Cuspidal module; Lie algebra; Associative algebra; Deformation; HOCHSCHILD COHOMOLOGY; TABLEAUX REALIZATION; CATEGORY-O; MODULES; FINITE; CATEGORIFICATION; REPRESENTATIONS; CLASSIFICATION;
D O I
10.1016/j.aim.2011.06.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the algebras describing blocks of the category of cuspidal weight (resp. generalized weight) sl(n) -modules are one-parameter (resp. multi-parameter) deformations of certain Brauer tree algebras. We explicitly determine these deformations both graded and ungraded. The algebras we deform also appear as special centralizer subalgebras of Temperley-Lieb algebras or as generalized Khovanov algebras. They show up in the context of highest weight representations of the Virasoro algebra, in the context of rational representations of the general linear group and Schur algebras and in the study of the Milnor fiber of Kleinian singularities. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1008 / 1042
页数:35
相关论文
共 53 条
[1]  
[Anonymous], 2005, Univ. Lecture Ser.
[2]  
BERNSTEIN JN, 1980, COMPOS MATH, V41, P245
[3]   On deformations of associative algebras [J].
Bezrukavnikov, Roman ;
Ginzburg, Victor .
ANNALS OF MATHEMATICS, 2007, 166 (02) :533-548
[4]   Category O for the Virasoro Algebra:: Cohomology and koszulity [J].
Boe, Brian D. ;
Nakano, Daniel K. ;
Wiesner, Emilie .
PACIFIC JOURNAL OF MATHEMATICS, 2008, 234 (01) :1-21
[5]  
Braden T., SELECTA MAT IN PRESS
[6]   Poincare-Birkhoff-Witt theorem for quadratic algebras of Koszul type [J].
Braverman, A ;
Gaitsgory, D .
JOURNAL OF ALGEBRA, 1996, 181 (02) :315-328
[7]   Complete reducibility of torsion free Cn-modules of finite degree [J].
Britten, D ;
Khomenko, O ;
Lemire, F ;
Mazorchuk, V .
JOURNAL OF ALGEBRA, 2004, 276 (01) :129-142
[8]   Submodule lattice of generalized verma modules [J].
Britten, DJ ;
Futorny, VM ;
Lernire, FW .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (12) :6175-6197
[9]   Tenser product realizations of simple torsion free modules [J].
Britten, DJ ;
Lemire, FW .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2001, 53 (02) :225-243
[10]   A CLASSIFICATION OF SIMPLE LIE MODULES HAVING A 1-DIMENSIONAL WEIGHT SPACE [J].
BRITTEN, DJ ;
LEMIRE, FW .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 299 (02) :683-697