Dynamic Vehicle Drifting With Nonlinear MPC and a Fused Kinematic-Dynamic Bicycle Model

被引:17
作者
Bellegarda, Guillaume [1 ,2 ]
Nguyen, Quan [1 ]
机构
[1] Univ Southern Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90007 USA
[2] Ecole Polytech Fed Lausanne, BioRobot Lab, CH-1015 Lausanne, Switzerland
来源
IEEE CONTROL SYSTEMS LETTERS | 2022年 / 6卷
关键词
Vehicle dynamics; Bicycles; Kinematics; Tires; Wheels; Steady-state; Mathematical models; Nonlinear model predictive control; vehicle drift control; autonomous drifting; autonomous vehicles;
D O I
10.1109/LCSYS.2021.3136142
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter we present a versatile trajectory optimization framework that leverages a fused kinematic-dynamic bicycle model for highly dynamic vehicle drifting maneuvers. Our framework can be used online to generate drifting maneuvers, offline to plan drift parking, and additionally enables online tracking of the offline computed parking maneuvers. Importantly, neither individual kinematic nor dynamic bicycle models alone can be used straightforwardly in an optimization framework to plan nor execute the presented motions, as the former cannot model drifting, and the latter becomes ill-defined at low speeds. We validate our framework in a Gazebo simulation of the MIT RACECAR, where we show several drifting scenarios such as steady-state drifting with a range of desired yaw rates as well as a dynamic drift parking maneuver under noisy conditions, and video results can be found at https://youtu.be/MF1_fS6CQQs.
引用
收藏
页码:1958 / 1963
页数:6
相关论文
共 22 条
[1]   CasADi: a software framework for nonlinear optimization and optimal control [J].
Andersson, Joel A. E. ;
Gillis, Joris ;
Horn, Greg ;
Rawlings, James B. ;
Diehl, Moritz .
MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) :1-36
[2]   An Online Training Method for Augmenting MPC with Deep Reinforcement Learning [J].
Bellegarda, Guillaume ;
Byl, Katie .
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, :5453-5459
[3]  
Bellegarda G, 2020, IEEE INT CONF ROBOT, P7905, DOI [10.1109/icra40945.2020.9197541, 10.1109/ICRA40945.2020.9197541]
[4]  
Bellegarda G, 2019, IEEE DECIS CONTR P, P7776, DOI 10.1109/CDC40024.2019.9029417
[5]  
Cutler M, 2016, IEEE INT CONF ROBOT, P5442, DOI 10.1109/ICRA.2016.7487756
[6]  
Goh JY, 2016, IEEE INT VEH SYM, P597, DOI 10.1109/IVS.2016.7535448
[7]  
Gonzales J. M, 2018, THESIS U CALIFORNIA
[8]   Autonomous Drift Parking using a Switched Control Strategy with Onboard Sensors [J].
Jelavic, E. ;
Gonzales, J. ;
Borrelli, F. .
IFAC PAPERSONLINE, 2017, 50 (01) :3714-3719
[9]  
Jeon JH, 2011, IEEE DECIS CONTR P, P3276, DOI 10.1109/CDC.2011.6161521
[10]   AMZ Driverless: The full autonomous racing system [J].
Kabzan, Juraj ;
Valls, Miguel I. ;
Reijgwart, Victor J. F. ;
Hendrikx, Hubertus F. C. ;
Ehmke, Claas ;
Prajapat, Manish ;
Buhler, Andreas ;
Gosala, Nikhil ;
Gupta, Mehak ;
Sivanesan, Ramya ;
Dhall, Ankit ;
Chisari, Eugenio ;
Karnchanachari, Napat ;
Brits, Sonja ;
Dangel, Manuel ;
Sa, Inkyu ;
Dube, Renaud ;
Gawel, Abel ;
Pfeiffer, Mark ;
Liniger, Alexander ;
Lygeros, John ;
Siegwart, Roland .
JOURNAL OF FIELD ROBOTICS, 2020, 37 (07) :1267-1294