Exploiting Sparse Dependence Structure in Model Based Classification

被引:0
作者
Pavlenko, Tatjana [1 ]
Bjorkstrom, Anders [2 ]
机构
[1] Stockholm Univ, Dept Stat, S-10691 Stockholm, Sweden
[2] Stockholm Univ, Dept Math, S-10691 Stockholm, Sweden
来源
COMBINING SOFT COMPUTING AND STATISTICAL METHODS IN DATA ANALYSIS | 2010年 / 77卷
关键词
Classification; High dimensionality; Sparsity; Lasso; Variable selection;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparsity patterns discovered in the data dependence structure were used to reduce the dimensionality and improve performance accuracy of the model based classifier in a high dimensional framework.
引用
收藏
页码:509 / +
页数:3
相关论文
共 6 条
  • [1] Parallel block tridiagonalization of real symmetric matrices
    Bai, Yihua
    Ward, Robert C.
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2008, 68 (05) : 703 - 715
  • [2] Data complexity assessment in undersampled classification of high-dimensional biomedical data
    Baumgartner, R
    Somorjai, RL
    [J]. PATTERN RECOGNITION LETTERS, 2006, 27 (12) : 1383 - 1389
  • [3] Regularization Paths for Generalized Linear Models via Coordinate Descent
    Friedman, Jerome
    Hastie, Trevor
    Tibshirani, Rob
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01): : 1 - 22
  • [4] Hastie T., 2009, ELEMENTS STAT LEARNI, DOI 10.1007/978-0-387-84858-7
  • [5] Marshall A. W., 1990, Aequ. Math., V40, P89, DOI DOI 10.1007/BF02112284
  • [6] PAVLENKO T, 2004, ADV APPL STAT, V4, P357