Comparison of blood-oxygen-level-dependent functional magnetic resonance imaging and near-infrared spectroscopy recording durinleg functional brain activation in patients with stroke and brain tumors

被引:66
作者
Sakatani, Kaoru [1 ,2 ]
Murata, Yoshihiro [2 ]
Fujiwara, Norio [2 ]
Hoshino, Tatsuya [2 ]
Nakamura, Shin [2 ]
Kano, Tsuneo [2 ]
Katayama, Yoichi [2 ]
机构
[1] Nihon Univ, Sch Med, Dept Neurol Surg, Div Opt Brain Engn, Tokyo 1738610, Japan
[2] Nihon Univ, Sch Med, Dept Neurosurg, Div Appl Syst Neurosci, Tokyo 1738610, Japan
关键词
cortical mapping; cerebral blood flow; hemodynamic response; hemoglobin; near-infrared spectroscopy; oxygen metabolism; primary sensorimotor cortex;
D O I
10.1117/1.2823036
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Blood-oxygen-level-dependent contrast functional magnetic resonance imaging (BOLD-fMRI) has been used to perform functional imaging in brain disorders such as stroke and brain tumors. However, recent studies have revealed that BOLD-fMRI does not image activation areas correctly in such patients. To clarify the characteristics of the evoked cerebral blood oxygenation (CBO) changes occurring in stroke and brain tumors, we have been comparing near-infrared spectroscopy (NIRS) and BOLD-fMRI recording during functional brain activation in these patients. We review our recent studies and related functional imaging studies on the brain disorders. In the primary sensorimotor cortex (PSMC) on the nonlesion side, the motor task consistently caused a decrease of deoxyhemoglobin (deoxy-Hb) with increases of oxyhemoglobin (oxy-Hb) and total hemoglobin (t-Hb ), which is consistent with the evoked CBO response observed in normal adults. BOLD-fMRI demonstrated robust activation areas on the nonlesion side. In stroke patients, severe cerebral ischemia (i. e., misery perfusion) caused an increase of deoxy-Hb during the task, associated with increases of oxy-Hb and t-Hb, in the PSMC on the lesion side. In addition, the activation volume of BOLD-fMRI was significantly reduced on the lesion side. The BOLD signal did not change in some areas of the PSMC on the lesion side, but it tended to decrease in other areas during the tasks. In brain tumors, BOLD-fMRI clearly demonstrated activation areas in the PSMC on the lesion side in patients who displayed a normal evoked CBO response. However, the activation volume on the lesion side was significantly reduced in patients who exhibited an increase of deoxy-Hb during the task. In both stroke and brain tumors, false-negative activations (i. e., marked reductions of activation volumes) in BOLD imaging were associated with increases of deoxy-Hb, which could cause a reduction in BOLD signal. BOLD-fMRI investigations of patients with brain disorders should be performed while giving consideration to atypical evoked CBO changes. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
引用
收藏
页数:8
相关论文
共 48 条
[1]   Functional magnetic resonance imaging of regional brain activity in patients with intracerebral gliomas: Findings and implications for clinical management [J].
Atlas, SW ;
Howard, RS ;
Maldjian, J ;
Alsop, D ;
Detre, JA ;
Listerud, J ;
DEsposito, M ;
Judy, KD ;
Zager, E ;
Stecker, M .
NEUROSURGERY, 1996, 38 (02) :329-337
[2]   Modulation of the BOLD-response in early recovery from sensorimotor stroke [J].
Binkofski, F ;
Seitz, RJ .
NEUROLOGY, 2004, 63 (07) :1223-1229
[3]   The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics [J].
Boas, DA ;
Gaudette, T ;
Strangman, G ;
Cheng, XF ;
Marota, JJA ;
Mandeville, JB .
NEUROIMAGE, 2001, 13 (01) :76-90
[4]   THE INTRAVASCULAR CONTRIBUTION TO FMRI SIGNAL CHANGE - MONTE-CARLO MODELING AND DIFFUSION-WEIGHTED STUDIES IN-VIVO [J].
BOXERMAN, JL ;
BANDETTINI, PA ;
KWONG, KK ;
BAKER, JR ;
DAVIS, TL ;
ROSEN, BR ;
WEISSKOFF, RM .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (01) :4-10
[5]   A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation [J].
Buxton, RB ;
Frank, LR .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1997, 17 (01) :64-72
[6]   Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis [J].
Cao, Y ;
D'Olhaberriague, L ;
Vikingstad, EM ;
Levine, SR ;
Welch, KMA .
STROKE, 1998, 29 (01) :112-122
[7]   A functional MRI study of subjects recovered from hemiparetic stroke [J].
Cramer, SC ;
Nelles, G ;
Benson, RR ;
Kaplan, JD ;
Parker, RA ;
Kwong, KK ;
Kennedy, DN ;
Finklestein, SP ;
Rosen, BR .
STROKE, 1997, 28 (12) :2518-2527
[8]   Alterations in the bold FMRI signal with ageing and disease: A challenge for neuroimaging [J].
D'Esposito, M ;
Deouell, LY ;
Gazzaley, A .
NATURE REVIEWS NEUROSCIENCE, 2003, 4 (11) :863-872
[9]   NONOXIDATIVE GLUCOSE CONSUMPTION DURING FOCAL PHYSIOLOGIC NEURAL ACTIVITY [J].
FOX, PT ;
RAICHLE, ME ;
MINTUN, MA ;
DENCE, C .
SCIENCE, 1988, 241 (4864) :462-464
[10]   FOCAL PHYSIOLOGICAL UNCOUPLING OF CEREBRAL BLOOD-FLOW AND OXIDATIVE-METABOLISM DURING SOMATOSENSORY STIMULATION IN HUMAN-SUBJECTS [J].
FOX, PT ;
RAICHLE, ME .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (04) :1140-1144