Thermionic Field Emission Transport in Carbon Nanotube Transistors

被引:9
作者
Perello, David J. [1 ]
Lim, Seong Chu [1 ]
Chae, Seung Jin [1 ]
Lee, Innam [2 ]
Kim, Moon. J. [3 ]
Lee, Young Hee [1 ]
Yun, Minhee [2 ]
机构
[1] Sungkyunkwan Adv Inst Nanotechnol, Dept Phys, Dept Energy Sci, Suwon 440746, South Korea
[2] Univ Pittsburgh, Dept Elect Engn, Pittsburgh, PA 15219 USA
[3] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
基金
美国国家科学基金会;
关键词
carbon nanotube; thermionic field emission; schottky barrier; electrical transport; saturation current; differential conductance; SCHOTTKY BARRIERS; LOGIC-CIRCUITS; METAL; CONTACT;
D O I
10.1021/nn102343k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With experimental and analytical analysis, we demonstrate a relationship between the metal contact work function and the electrical transport properties saturation current (l(sat)) and differential conductance (sigma(sd) = partial derivative l(sd)/partial derivative V-sd) in ambient exposed carbon nanotubes (CNT). A single chemical vapor deposition (CVD) grown 6 mm long semiconducting single-walled CNT is electrically contacted with a statistically significant number of Hf, Cr, Ti, Pd, and Au electrodes respectively. The observed exponentially increasing. relationship of l(sat) and sigma(sd) with metal contact work function is explained by a theoretical model derived from thermionic field emission. Statistical analysis and spread of the data suggest that the conduction variability in same CNT devices results from differences in local surface potential of the Metal contact. Based on the theoretical model and methodology, an improved CNT-based gas sensing device layout is suggested. A method to experimentally determine gas-induced work function changes in metals is also examined.
引用
收藏
页码:1756 / 1760
页数:5
相关论文
共 23 条
[1]   Tunneling versus thermionic emission in one-dimensional semiconductors [J].
Appenzeller, J ;
Radosavljevic, M ;
Knoch, J ;
Avouris, P .
PHYSICAL REVIEW LETTERS, 2004, 92 (04) :4
[2]   Logic circuits with carbon nanotube transistors [J].
Bachtold, A ;
Hadley, P ;
Nakanishi, T ;
Dekker, C .
SCIENCE, 2001, 294 (5545) :1317-1320
[3]   Tuning from thermionic emission to ohmic tunnel contacts via doping in Schottky-barrier nanotube transistors [J].
Chen, Yung-Fu ;
Fuhrer, Michael S. .
NANO LETTERS, 2006, 6 (09) :2158-2162
[4]   An integrated logic circuit assembled on a single carbon nanotube [J].
Chen, ZH ;
Appenzeller, J ;
Lin, YM ;
Sippel-Oakley, J ;
Rinzler, AG ;
Tang, JY ;
Wind, SJ ;
Solomon, PM ;
Avouris, P .
SCIENCE, 2006, 311 (5768) :1735-1735
[5]   The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors [J].
Chen, ZH ;
Appenzeller, J ;
Knoch, J ;
Lin, YM ;
Avouris, P .
NANO LETTERS, 2005, 5 (07) :1497-1502
[6]   NORMALIZED THERMIONIC-FIELD (T-F) EMISSION IN METAL-SEMICONDUCTOR (SCHOTTKY) BARRIERS [J].
CROWELL, CR ;
RIDEOUT, VL .
SOLID-STATE ELECTRONICS, 1969, 12 (02) :89-&
[7]   Y-Contacted High-Performance n-Type Single-Walled Carbon Nanotube Field-Effect Transistors: Scaling and Comparison with Sc-Contacted Devices [J].
Ding, Li ;
Wang, Sheng ;
Zhang, Zhiyong ;
Zeng, Qingsheng ;
Wang, Zhenxing ;
Pei, Tian ;
Yang, Leijing ;
Liang, Xuelei ;
Shen, Jun ;
Chen, Qing ;
Cui, Rongli ;
Li, Yan ;
Peng, Lian-Mao .
NANO LETTERS, 2009, 9 (12) :4209-4214
[8]   Imaging of the schottky barriers and charge depletion in carbon nanotube transistors [J].
Freitag, Marcus ;
Tsang, James C. ;
Bol, Ageeth ;
Yuan, Dongning ;
Liu, Jie ;
Avouris, Phaedon .
NANO LETTERS, 2007, 7 (07) :2037-2042
[9]   Carbon nanotubes as Schottky barrier transistors [J].
Heinze, S ;
Tersoff, J ;
Martel, R ;
Derycke, V ;
Appenzeller, J ;
Avouris, P .
PHYSICAL REVIEW LETTERS, 2002, 89 (10)
[10]   Ballistic carbon nanotube field-effect transistors [J].
Javey, A ;
Guo, J ;
Wang, Q ;
Lundstrom, M ;
Dai, HJ .
NATURE, 2003, 424 (6949) :654-657