Inferring galaxy dark halo properties from visible matter with machine learning

被引:14
作者
von Marttens, Rodrigo [1 ]
Casarini, Luciano [2 ]
Napolitano, Nicola R. [3 ,4 ]
Wu, Sirui [3 ,4 ]
Amaro, Valeria [3 ]
Li, Rui [3 ]
Tortora, Crescenzo [5 ]
Canabarro, Askery [6 ]
Wang, Yang [4 ,7 ]
机构
[1] Observ Nacl, BR-20921400 Rio De Janeiro, RJ, Brazil
[2] Univ Fed Sergipe, Dept Phys, Ave Marechal Rondon S-N, BR-49100000 Sao Cristovao, SE, Brazil
[3] Sun Yat Sen Univ, Sch Phys & Astron, Zhuhai Campus,2 Daum Rd, Xiangzhou Dist 519082, Zhuhai, Peoples R China
[4] CSST Sci Ctr Guangdong Hong Kong Macau Great Bay, Zhuhai 519082, Peoples R China
[5] INAF Osservatorio Astron Capodimonte, Salita Moiariello 16, I-80131 Naples, Italy
[6] Univ Fed Alagoas, Grp Fis Mat Condensada, Nucleo Ciencias Exatas NCEx, BR-57309005 Arapiraca, AL, Brazil
[7] Peng Cheng Lab, Dept Math & Theories, 2 Xingke 1st St, Shenzhen 518000, Peoples R China
关键词
methods: data analysis; galaxies: general; dark matter; KILO-DEGREE SURVEY; COSMOLOGICAL PARAMETER-ESTIMATION; STELLAR POPULATION SYNTHESIS; MASS ASSEMBLY GAMA; DIGITAL SKY SURVEY; TO-LIGHT RATIOS; SCALING RELATIONS; ILLUSTRISTNG SIMULATIONS; VELOCITY DISPERSIONS; FUNDAMENTAL PLANE;
D O I
10.1093/mnras/stac2449
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Next-generation surveys will provide photometric and spectroscopic data of millions to billions of galaxies with unprecedented precision. This offers a unique chance to improve our understanding of the galaxy evolution and the unresolved nature of dark matter (DM). At galaxy scales, the density distribution of DM is strongly affected by feedback processes, which are difficult to fully account for in classical techniques to derive galaxy masses. We explore the capability of supervised machine learning (ML) algorithms to predict the DM content of galaxies from 'luminous' observational-like parameters, using the TNG100 simulation. In particular, we use photometric (magnitudes in different bands), structural (the stellar half-mass radius and three different baryonic masses), and kinematic (1D velocity dispersion and the maximum rotation velocity) parameters to predict the total DM mass, DM half-mass radius, and DM mass inside one and two stellar half-mass radii. We adopt the coefficient of determination, R-2, as a metric to evaluate the accuracy of these predictions. We find that using all observational quantities together (photometry, structural, and kinematics), we reach high accuracy for all DM quantities (up to R-2 similar to 0.98). This first test shows that ML tools are promising to predict the DM in real galaxies. The next steps will be to implement the observational realism of the training sets, by closely selecting samples that accurately reproduce the typical observed 'luminous' scaling relations. The so-trained pipelines will be suitable for real galaxy data collected from Rubin/Large Synoptic Survey Telescope (LSST), Euclid, Chinese Survey Space Telescope (CSST), 4-metre Multi-Object Spectrograph Telescope (4MOST), Dark Energy Spectroscopic Instrument (DESI), to derive e.g. the properties of their central DM fractions.
引用
收藏
页码:3924 / 3943
页数:20
相关论文
共 133 条
[61]   THE EFFECT OF WARM DARK MATTER ON GALAXY PROPERTIES: CONSTRAINTS FROM THE STELLAR MASS FUNCTION AND THE TULLY-FISHER RELATION [J].
Kang, Xi ;
Maccio, Andrea V. ;
Dutton, Aaron A. .
ASTROPHYSICAL JOURNAL, 2013, 767 (01)
[62]   The dependence of star formation history and internal structure on stellar mass for 105 low-redshift galaxies [J].
Kauffmann, G ;
Heckman, TM ;
White, SDM ;
Charlot, S ;
Tremonti, C ;
Peng, EW ;
Seibert, M ;
Brinkmann, J ;
Nichol, RC ;
SubbaRao, M ;
York, D .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 341 (01) :54-69
[63]  
Kelleher JD, 2015, FUNDAMENTALS OF MACHINE LEARNING FOR PREDICTIVE DATA ANALYTICS: ALGORITHMS, WORKED EXAMPLES, AND CASE STUDIES, P1
[64]   SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION [J].
Komatsu, E. ;
Smith, K. M. ;
Dunkley, J. ;
Bennett, C. L. ;
Gold, B. ;
Hinshaw, G. ;
Jarosik, N. ;
Larson, D. ;
Nolta, M. R. ;
Page, L. ;
Spergel, D. N. ;
Halpern, M. ;
Hill, R. S. ;
Kogut, A. ;
Limon, M. ;
Meyer, S. S. ;
Odegard, N. ;
Tucker, G. S. ;
Weiland, J. L. ;
Wollack, E. ;
Wright, E. L. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2011, 192 (02)
[65]   SPIDER. IV. OPTICAL AND NEAR-INFRARED COLOR GRADIENTS IN EARLY-TYPE GALAXIES: NEW INSIGHT INTO CORRELATIONS WITH GALAXY PROPERTIES [J].
La Barbera, F. ;
De Carvalho, R. R. ;
De La Rosa, I. G. ;
Gal, R. R. ;
Swindle, R. ;
Lopes, P. A. A. .
ASTRONOMICAL JOURNAL, 2010, 140 (05) :1528-1556
[66]   CMU DeepLens: deep learning for automatic image-based galaxy-galaxy strong lens finding [J].
Lanusse, Francois ;
Ma, Quanbin ;
Li, Nan ;
Collett, Thomas E. ;
Li, Chun-Liang ;
Ravanbakhsh, Siamak ;
Mandelbaum, Rachel ;
Poczos, Barnabas .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 473 (03) :3895-3906
[67]  
Laureijs R, 2011, Arxiv, DOI arXiv:1110.3193
[68]   SPARC: MASS MODELS FOR 175 DISK GALAXIES WITH SPITZER PHOTOMETRY AND ACCURATE ROTATION CURVES [J].
Lelli, Federico ;
McGaugh, Stacy S. ;
Schombert, James M. .
ASTRONOMICAL JOURNAL, 2016, 152 (06)
[69]  
Li R., 2020, ASTROPHYS J, V899, P30, DOI DOI 10.3847/1538-4357/AC46D3
[70]   Using deep Residual Networks to search for galaxy-Ly α emitter lens candidates based on spectroscopic selection [J].
Li, Rui ;
Shu, Yiping ;
Su, Jianlin ;
Feng, Haicheng ;
Zhang, Guobao ;
Wang, Jiancheng ;
Liu, Hongtao .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 482 (01) :313-320