Estimated effect of increased diagnosis, treatment, and control of diabetes and its associated cardiovascular risk factors among low-income and middle-income countries: a microsimulation model

被引:29
作者
Basu, Sanjay [1 ,2 ,4 ,5 ,6 ]
Flood, David [7 ,8 ,9 ]
Geldsetzer, Pascal [10 ,11 ,12 ]
Theilmann, Michaela [11 ,12 ]
Marcus, Maja E. [13 ,14 ]
Ebert, Cara [15 ]
Mayige, Mary [16 ]
Wong-McClure, Roy [17 ]
Farzadfar, Farshad [18 ,20 ]
Moghaddam, Sahar Saeedi [19 ]
Agoudavi, Kokou [21 ]
Norov, Bolormaa [22 ]
Houehanou, Corine [23 ]
Andall-Brereton, Glennis [24 ]
Gurung, Mongal [25 ]
Brian, Garry [26 ]
Bovet, Pascal [27 ]
Martins, Joao [28 ]
Atun, Rifat [3 ]
Barnighausen, Till [3 ,11 ,12 ,29 ]
Vollmer, Sebastian [11 ,12 ]
Manne-Goehler, Jen [30 ,31 ]
Davies, Justine [32 ,33 ,34 ]
机构
[1] Harvard Med Sch, Ctr Primary Care, Boston, MA 02115 USA
[2] Brigham & Womens Hosp, Harvard TH Chan Sch Publ Hlth, Ariadne Labs, 75 Francis St, Boston, MA 02115 USA
[3] Brigham & Womens Hosp, Harvard TH Chan Sch Publ Hlth, Dept Global Hlth & Populat, 75 Francis St, Boston, MA 02115 USA
[4] Imperial Coll, Sch Publ Hlth, London, England
[5] Collect Hlth, Res & Populat Hlth, San Francisco, CA USA
[6] Univ Toronto, Inst Hlth Policy Management & Evaluat, Toronto, ON, Canada
[7] Univ Michigan, Dept Internal Med, Natl Clinician Scholars Program, Div Hosp Med, Ann Arbor, MI 48109 USA
[8] Wuqu Kawog, Ctr Indigenous Hlth Res, Tecpan, Guatemala
[9] Inst Nutr Cent Amer & Panama, Res Ctr Prevent Chron Dis, Guatemala City, Guatemala
[10] Stanford Univ, Dept Med, Div Primary Care & Populat Hlth, Stanford, CA 94305 USA
[11] Heidelberg Univ, Heidelberg Inst Global Hlth, Heidelberg, Germany
[12] Univ Hosp, Heidelberg, Germany
[13] Univ Goettingen, Dept Econ, Gottingen, Germany
[14] Univ Goettingen, Ctr Modern Indian Studies, Gottingen, Germany
[15] Leibniz Inst Econ Res, Rhein Westfal Inst, Essen, Germany
[16] Natl Inst Med Res, Epidemiol Dept, Dar Es Salaam, Tanzania
[17] Costa Rican Social Secur Fund, Off Epidemiol & Surveillance, San Jose, Costa Rica
[18] Noncommunicable Dis Res Ctr, Endocrinol & Metab Populat Sci Inst, Tehran, Iran
[19] Endocrinol & Metab Res Ctr, Endocrinol & Metab Clin Sci Inst, Tehran, Iran
[20] Univ Tehran Med Sci, Tehran, Iran
[21] Togo Minist Hlth, Lome, Togo
[22] Natl Ctr Publ Hlth, Ulaanbaatar, Mongolia
[23] Univ Parakou, Natl Training Sch Senior Technicians Publ Hlth &, Parakou, Benin
[24] Caribbean Publ Hlth Agcy, Noncommunicable Dis, Port Of Spain, Trinidad Tobago
[25] Minist Hlth, Res & Epidemiol Unit, Thimphu, Bhutan
[26] Fred Hollows Fdn, Sydney, NSW, Australia
[27] Minist Hlth, Victoria, Seychelles
[28] Univ Nacl Timor Lorosae, Dili, Timor-Leste
[29] Africa Hlth Res Inst, Somkhele, South Africa
[30] Brigham & Womens Hosp, Div Infect Dis, 75 Francis St, Boston, MA 02115 USA
[31] Harvard Med Sch, Massachusetts Gen Hosp, Practice Evaluat Ctr, Boston, MA 02115 USA
[32] Univ Birmingham, Inst Appl Hlth Res, Birmingham, W Midlands, England
[33] Stellenbosch Univ, Ctr Global Surg, Dept Global Hlth, Cape Town, South Africa
[34] Univ Witwatersrand, Wits Univ, Sch Publ Hlth, Fac Hlth Sci,Med Res Council,Rural Publ Hlth & Hl, Johannesburg, South Africa
来源
LANCET GLOBAL HEALTH | 2021年 / 9卷 / 11期
基金
美国国家卫生研究院; 英国惠康基金;
关键词
INDIVIDUAL PARTICIPANT DATA; EQUATIONS; COMPLICATIONS; VALIDATION; AFRICA; CARE;
D O I
10.1016/S2214-109X(21)00340-5
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background Given the increasing prevalence of diabetes in low-income and middle-income countries (LMICs), we aimed to estimate the health and cost implications of achieving different targets for diagnosis, treatment, and control of diabetes and its associated cardiovascular risk factors among LMICs. Methods We constructed a microsimulation model to estimate disability-adjusted life-years (DALYs) lost and healthcare costs of diagnosis, treatment, and control of blood pressure, dyslipidaemia, and glycaemia among people with diabetes in LMICs. We used individual participant data-specifically from the subset of people who were defined as having any type of diabetes by WHO standards-from nationally representative, cross-sectional surveys (2006-18) spanning 15 world regions to estimate the baseline 10-year risk of atherosclerotic cardiovascular disease (defined as fatal and non-fatal myocardial infarction and stroke), heart failure (ejection fraction of <40%, with New York Heart Association class III or IV functional limitations), end-stage renal disease (defined as an estimated glomerular filtration rate <15 mL/min per 1.73 m(2) or needing dialysis or transplant), retinopathy with severe vision loss (<20/200 visual acuity as measured by the Snellen chart), and neuropathy with pressure sensation loss (assessed by the Semmes-Weinstein 5.07/10 g monofilament exam). We then used data from meta-analyses of randomised controlled trials to estimate the reduction in risk and the WHO OneHealth tool to estimate costs in reaching either 60% or 80% of diagnosis, treatment initiation, and control targets for blood pressure, dyslipidaemia, and glycaemia recommended by WHO guidelines. Costs were updated to 2020 International Dollars, and both costs and DALYs were computed over a 10-year policy planning time horizon at a 3% annual discount rate. Findings We obtained data from 23 678 people with diabetes from 67 countries. The median estimated 10-year risk was 10.0% (IQR 4.0-18.0) for cardiovascular events, 7.8% (5.1-11.8) for neuropathy with pressure sensation loss, 7.2% (5.6-9.4) for end-stage renal disease, 6.0% (4.2-8.6) for retinopathy with severe vision loss, and 2.6% (1.2-5.3) for congestive heart failure. A target of 80% diagnosis, 80% treatment, and 80% control would be expected to reduce DALYs lost from diabetes complications from a median population-weighted loss to 1097 DALYs per 1000 population over 10 years (IQR 1051-1155), relative to a baseline of 1161 DALYs, primarily from reduced cardiovascular events (down from a median of 143 to 117 DALYs per 1000 population) due to blood pressure and statin treatment, with comparatively little effect from glycaemic control. The target of 80% diagnosis, 80% treatment, and 80% control would be expected to produce an overall incremental cost-effectiveness ratio of US$1362 per DALY averted (IQR 1304-1409), with the majority of decreased costs from reduced cardiovascular event management, counterbalanced by increased costs for blood pressure and statin treatment, producing an overall incremental cost-effectiveness ratio of $1362 per DALY averted (IQR 1304-1409). Interpretation Reducing complications from diabetes in LMICs is likely to require a focus on scaling up blood pressure and statin medication treatment initiation and blood pressure medication titration rather than focusing on increasing screening to increase diabetes diagnosis, or a glycaemic treatment and control among people with diabetes. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.
引用
收藏
页码:E1539 / E1552
页数:14
相关论文
共 28 条
[2]  
[Anonymous], 2019, IDF Diabetes Atlas, V9th
[3]   Diabetes in sub-Saharan Africa: from clinical care to health policy [J].
Atun, Rifat ;
Davies, Justine I. ;
Gale, Edwin A. M. ;
Barnighausen, Till ;
Beran, David ;
Kengne, Andre Pascal ;
Levitt, Naomi S. ;
Mangugu, Florence W. ;
Nyirenda, Moffat J. ;
Ogle, Graham D. ;
Ramaiya, Kaushik ;
Sewankambo, Nelson K. ;
Sobngwi, Eugene ;
Tesfaye, Solomon ;
Yudkin, John S. ;
Basu, Sanjay ;
Bommer, Christian ;
Heesemann, Esther ;
Manne-Goehler, Jennifer ;
Postolovska, Iryna ;
Sagalova, Vera ;
Vollmer, Sebastian ;
Abbas, Zulfiqarali G. ;
Ammon, Benjamin ;
Angamo, Mulugeta Terekegn ;
Annamreddi, Akhila ;
Awasthi, Ananya ;
Besancon, Stephane ;
Bhadriraju, Sudhamayi ;
Binagwaho, Agnes ;
Burgess, Philip I. ;
Burton, Matthew J. ;
Chai, Jeanne ;
Chilunga, Felix P. ;
Chipendo, Portia ;
Conn, Anna ;
Joel, Dipesalema R. ;
Eagan, Arielle W. ;
Gishoma, Crispin ;
Ho, Julius ;
Jong, Simcha ;
Kakarmath, Sujay S. ;
Khan, Yasmin ;
Kharel, Ramu ;
Kyle, Michael A. ;
Lee, Seitetz C. ;
Lichtman, Amos ;
Malm, Carl P. ;
Mbaye, Maimouna N. ;
Muhimpundu, Marie A. .
LANCET DIABETES & ENDOCRINOLOGY, 2017, 5 (08) :622-667
[4]  
Basu S, 2017, SYSTEMS SCI POPULATI
[5]   Validation of Risk Equations for Complications of Type 2 Diabetes (RECODe) Using Individual Participant Data From Diverse Longitudinal Cohorts in the U.S [J].
Basu, Sanjay ;
Sussman, Jeremy B. ;
Berkowitz, Seth A. ;
Hayward, Rodney A. ;
Bertoni, Alain G. ;
Correa, Adolfo ;
Mwasongwe, Stanford ;
Yudkin, John S. .
DIABETES CARE, 2018, 41 (03) :586-595
[6]   Development and validation of Risk Equations for Complications Of type 2 Diabetes (RECODe) using individual participant data from randomised trials [J].
Basu, Sanjay ;
Sussman, Jeremy B. ;
Berkowitz, Seth A. ;
Hayward, Rodney A. ;
Yudkin, John S. .
LANCET DIABETES & ENDOCRINOLOGY, 2017, 5 (10) :788-798
[7]   Comparative effectiveness and cost-effectiveness of treat-to-target versus benefit-based tailored treatment of type 2 diabetes in low-income and middle-income countries: a modelling analysis [J].
Basu, Sanjay ;
Shankar, Vishnu ;
Yudkin, John S. .
LANCET DIABETES & ENDOCRINOLOGY, 2016, 4 (11) :922-932
[8]   The Health System and Population Health Implications of Large-Scale Diabetes Screening in India: A Microsimulation Model of Alternative Approaches [J].
Basu, Sanjay ;
Millett, Christopher ;
Vijan, Sandeep ;
Hayward, Rodney A. ;
Kinra, Sanjay ;
Ahuja, Rahoul ;
Yudkin, John S. .
PLOS MEDICINE, 2015, 12 (05)
[9]  
Bonita R, 2003, GLOBAL BEHAVIORAL RISK FACTOR SURVEILLANCE, P9
[10]   Mortality impact of achieving WHO cervical cancer elimination targets: a comparative modelling analysis in 78 low-income and lower-middle-income countries [J].
Canfell, Karen ;
Kim, Jane J. ;
Brisson, Marc ;
Keane, Adam ;
Simms, Kate T. ;
Caruana, Michael ;
Burger, Emily A. ;
Martin, Dave ;
Nguyen, Diep T. N. ;
Benard, Elodie ;
Sy, Stephen ;
Regan, Catherine ;
Drolet, Melanie ;
Gingras, Guillaume ;
Laprise, Jean-Francois ;
Torode, Julie ;
Smith, Megan A. ;
Fidarova, Elena ;
Trapani, Dario ;
Bray, Freddie ;
Ilbawi, Andre ;
Broutet, Nathalie ;
Hutubessy, Raymond .
LANCET, 2020, 395 (10224) :591-603