Uncertainty of remotely sensed aboveground biomass over an African tropical forest: Propagating errors from trees to plots to pixels

被引:118
作者
Chen, Qi [1 ]
Laurin, Gaia Vaglio [2 ]
Valentini, Riccardo [2 ,3 ]
机构
[1] Univ Hawaii Manoa, Dept Geog, Honolulu, HI 96822 USA
[2] CMCC, IAFENT Div, I-01100 Viterbo, Italy
[3] Univ Tuscia, Dept Innovat Biol Agrofood & Forest Syst, I-01100 Viterbo, Italy
基金
欧洲研究理事会;
关键词
Uncertainty; Error; Aboveground biomass; Carbon; Lidar; Tropical forests; GREENHOUSE-GAS EMISSIONS; AIRBORNE LIDAR; CARBON STOCKS; DEFORESTATION; AMAZON; VOLUME;
D O I
10.1016/j.rse.2015.01.009
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Quantifying the uncertainty of the aboveground biomass (AGB) and carbon (C) stock is crucial for understanding the global C cycle and implementing the United Nations Program on Reducing Emissions from Deforestation and Forest Degradation (UN-REDD). The uncertainty analysis of remotely sensed AGB is tricky because, if validation plots or cross-validation is used for error assessment, the AGB of validation plots does not necessarily represent the actual measurements but estimates of the true AGB. Leveraging a recently published pan-tropical destructively measured tree AGB database, this study proposed a new method of characterizing the uncertainty of the remotely sensed AGB. The method propagates errors from tree- to landscape-level by considering errors in the whole workflow of the AGB mapping process, including allometric model development, tree measurements, tree-level AGB prediction, plot-level AGB estimation, plot-level remote sensing based biomass model development, remote sensing feature extraction, and pixel-level AGB prediction. Applying such a method to the tree AGB mapped using airborne lidar over tropical forests in Ghana, we found that the AGB prediction error is over 20% at 1 ha spatial resolution, larger than the results reported in previous studies for other tropical forests. The discrepancy between our studies and others reflects not only our focus on African tropical forests but also the methodological differences in our uncertainty analysis, especially in the aspect of comprehensively addressing more sources of uncertainty. This study also highlights the importance of considering the plot-level AGB estimate uncertainty when field plots are used to calibrate remote sensing based biomass models. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:134 / 143
页数:10
相关论文
共 42 条
[1]   Determination of tropical deforestation rates and related carbon losses from 1990 to 2010 [J].
Achard, Frederic ;
Beuchle, Rene ;
Mayaux, Philippe ;
Stibig, Hans-Juergen ;
Bodart, Catherine ;
Brink, Andreas ;
Carboni, Silvia ;
Desclee, Baudouin ;
Donnay, Francois ;
Eva, Hugh D. ;
Lupi, Andrea ;
Rasi, Rastislav ;
Seliger, Roman ;
Simonetti, Dario .
GLOBAL CHANGE BIOLOGY, 2014, 20 (08) :2540-2554
[2]  
[Anonymous], CARBON BALANCE MANAG
[3]   High-resolution mapping of forest carbon stocks in the Colombian Amazon [J].
Asner, G. P. ;
Clark, J. K. ;
Mascaro, J. ;
Galindo Garcia, G. A. ;
Chadwick, K. D. ;
Navarrete Encinales, D. A. ;
Paez-Acosta, G. ;
Cabrera Montenegro, E. ;
Kennedy-Bowdoin, T. ;
Duque, A. ;
Balaji, A. ;
von Hildebrand, P. ;
Maatoug, L. ;
Phillips Bernal, J. F. ;
Yepes Quintero, A. P. ;
Knapp, D. E. ;
Garcia Davila, M. C. ;
Jacobson, J. ;
Ordonez, M. F. .
BIOGEOSCIENCES, 2012, 9 (07) :2683-2696
[4]   Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric [J].
Asner, Gregory P. ;
Mascaro, Joseph .
REMOTE SENSING OF ENVIRONMENT, 2014, 140 :614-624
[5]   A first map of tropical Africa's above-ground biomass derived from satellite imagery [J].
Baccini, A. ;
Laporte, N. ;
Goetz, S. J. ;
Sun, M. ;
Dong, H. .
ENVIRONMENTAL RESEARCH LETTERS, 2008, 3 (04)
[6]   Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps [J].
Baccini, A. ;
Goetz, S. J. ;
Walker, W. S. ;
Laporte, N. T. ;
Sun, M. ;
Sulla-Menashe, D. ;
Hackler, J. ;
Beck, P. S. A. ;
Dubayah, R. ;
Friedl, M. A. ;
Samanta, S. ;
Houghton, R. A. .
NATURE CLIMATE CHANGE, 2012, 2 (03) :182-185
[7]   Quantifying uncertainty in estimates of C emissions from above-ground biomass due to historic land-use change to cropping in Australia [J].
Barrett, DJ ;
Galbally, IE ;
Graetz, RD .
GLOBAL CHANGE BIOLOGY, 2001, 7 (08) :883-902
[8]  
Bates D. M., 1988, Nonlinear Regression Analysis and Its Applications, V1st
[9]  
Berenguer E, 2014, GLOBAL CHANGE BIOL
[10]   Effects of Measurement Errors on Individual Tree Stem Volume Estimates for the Austrian National Forest Inventory [J].
Berger, Ambros ;
Gschwantner, Thomas ;
McRoberts, Ronald E. ;
Schadauer, Klemens .
FOREST SCIENCE, 2014, 60 (01) :14-24