Pseudo-symplectic Runge-Kutta methods

被引:42
|
作者
Aubry, A [1 ]
Chartier, P [1 ]
机构
[1] Inst Rech Informat & Syst Aleatoires, F-35042 Rennes, France
来源
BIT | 1998年 / 38卷 / 03期
关键词
Hamiltonian systems; pseudo-symplectic Runge-Kutta methods; symplectic Runge-Kutta methods; pseudo-symplecticness conditions; simplifying assumptions;
D O I
10.1007/BF02510253
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Apart from specific methods amenable to specific problems, symplectic Runge-Kutta methods are necessarily implicit. The aim of this paper is to construct explicit Runge-Kutta methods which mimic symplectic ones as far as the linear growth of the global error is concerned. Such method of order p have to be pseudo-symplectic of pseudo-symplecticness order 2p, i.e. to preserve the symplectic form to within O(h(2p))-terms. Pseudo-symplecticness conditions are then derived and the effective construction of methods discussed. Finally, the performances of the new methods are illustrated on several test problems.
引用
收藏
页码:439 / 461
页数:23
相关论文
共 50 条
  • [31] Construction of Symplectic Runge-Kutta Methods for Stochastic Hamiltonian Systems
    Wang, Peng
    Hong, Jialin
    Xu, Dongsheng
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 21 (01) : 237 - 270
  • [32] Symplectic Runge-Kutta methods for the Kalman-Bucy filter
    Hu, Guang-Da
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2008, 25 (02) : 173 - 183
  • [33] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, T.
    Kalogiratou, Z.
    Simos, T. E.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2271 - 2285
  • [34] Diagonally Implicit Symplectic Runge-Kutta Methods with Special Properties
    Kalogiratou, Z.
    Monovasilis, Th.
    Simos, T. E.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1387 - 1390
  • [35] Application of symplectic partitioned Runge-Kutta methods to Hamiltonian problems
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    ADVANCES IN COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2005, VOLS 4 A & 4 B, 2005, 4A-4B : 417 - 420
  • [36] A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (01) : 91 - 96
  • [37] Construction of symplectic (partitioned) Runge-Kutta methods with continuous stage
    Tang, Wensheng
    Lang, Guangming
    Luo, Xuqiong
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 286 : 279 - 287
  • [39] THE NONEXISTENCE OF SYMPLECTIC MULTI-DERIVATIVE RUNGE-KUTTA METHODS
    HAIRER, E
    MURUA, A
    SANZSERNA, JM
    BIT, 1994, 34 (01): : 80 - 87
  • [40] Positivity of Runge-Kutta and diagonally split Runge-Kutta methods
    Horvath, Z
    APPLIED NUMERICAL MATHEMATICS, 1998, 28 (2-4) : 309 - 326