Pseudo-symplectic Runge-Kutta methods

被引:42
|
作者
Aubry, A [1 ]
Chartier, P [1 ]
机构
[1] Inst Rech Informat & Syst Aleatoires, F-35042 Rennes, France
来源
BIT | 1998年 / 38卷 / 03期
关键词
Hamiltonian systems; pseudo-symplectic Runge-Kutta methods; symplectic Runge-Kutta methods; pseudo-symplecticness conditions; simplifying assumptions;
D O I
10.1007/BF02510253
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Apart from specific methods amenable to specific problems, symplectic Runge-Kutta methods are necessarily implicit. The aim of this paper is to construct explicit Runge-Kutta methods which mimic symplectic ones as far as the linear growth of the global error is concerned. Such method of order p have to be pseudo-symplectic of pseudo-symplecticness order 2p, i.e. to preserve the symplectic form to within O(h(2p))-terms. Pseudo-symplecticness conditions are then derived and the effective construction of methods discussed. Finally, the performances of the new methods are illustrated on several test problems.
引用
收藏
页码:439 / 461
页数:23
相关论文
共 50 条
  • [21] LINEAR STABILITY OF PARTITIONED RUNGE-KUTTA METHODS
    McLachlan, R. I.
    Sun, Y.
    Tse, P. S. P.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (01) : 232 - 263
  • [22] Runge-Kutta methods for Hamiltonian systems in non-standard symplectic two-form
    Karasozen, B
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1998, 66 (1-2) : 113 - 122
  • [23] ENERGY-PRESERVING RUNGE-KUTTA METHODS
    Celledoni, Elena
    McLachlan, Robert I.
    McLaren, David I.
    Owren, Brynjulf
    Quispel, G. Reinout W.
    Wright, William M.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (04): : 645 - 649
  • [24] Parametric symplectic partitioned Runge-Kutta methods with energy-preserving properties for Hamiltonian systems
    Wang, Dongling
    Xiao, Aiguo
    Li, Xueyang
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (02) : 303 - 310
  • [25] A Sixth Order Symmetric and Symplectic Diagonally Implicit Runge-Kutta Method
    Kalogiratou, Z.
    Monovasilis, Th
    Simos, T. E.
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 833 - 838
  • [26] Construction of Exponentially Fitted Symplectic Runge–Kutta–Nyström Methods from Partitioned Runge–Kutta Methods
    T. Monovasilis
    Z. Kalogiratou
    T. E. Simos
    Mediterranean Journal of Mathematics, 2016, 13 : 2271 - 2285
  • [27] PARTITIONED RUNGE-KUTTA METHODS FOR SEPARABLE HAMILTONIAN PROBLEMS
    ABIA, L
    SANZSERNA, JM
    MATHEMATICS OF COMPUTATION, 1993, 60 (202) : 617 - 634
  • [28] A note on continuous-stage Runge-Kutta methods
    Tang, Wensheng
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 231 - 241
  • [29] Diagonally implicit Runge-Kutta methods for stiff ODEs
    Kennedy, Christopher A.
    Carpenter, Mark H.
    APPLIED NUMERICAL MATHEMATICS, 2019, 146 : 221 - 244
  • [30] ORDER CONDITIONS FOR CANONICAL RUNGE-KUTTA SCHEMES
    SANZSERNA, JM
    ABIA, L
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (04) : 1081 - 1096