Pseudo-symplectic Runge-Kutta methods

被引:42
|
作者
Aubry, A [1 ]
Chartier, P [1 ]
机构
[1] Inst Rech Informat & Syst Aleatoires, F-35042 Rennes, France
来源
BIT | 1998年 / 38卷 / 03期
关键词
Hamiltonian systems; pseudo-symplectic Runge-Kutta methods; symplectic Runge-Kutta methods; pseudo-symplecticness conditions; simplifying assumptions;
D O I
10.1007/BF02510253
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Apart from specific methods amenable to specific problems, symplectic Runge-Kutta methods are necessarily implicit. The aim of this paper is to construct explicit Runge-Kutta methods which mimic symplectic ones as far as the linear growth of the global error is concerned. Such method of order p have to be pseudo-symplectic of pseudo-symplecticness order 2p, i.e. to preserve the symplectic form to within O(h(2p))-terms. Pseudo-symplecticness conditions are then derived and the effective construction of methods discussed. Finally, the performances of the new methods are illustrated on several test problems.
引用
收藏
页码:439 / 461
页数:23
相关论文
共 50 条
  • [1] Pseudo-symplectic Runge-Kutta methods
    A. Aubry
    P. Chartier
    BIT Numerical Mathematics, 1998, 38 : 439 - 461
  • [2] A note on pseudo-symplectic Runge-Kutta methods
    A. Aubry
    P. Chartier
    BIT Numerical Mathematics, 1998, 38 : 802 - 806
  • [3] A note on pseudo-symplectic Runge-Kutta methods
    Aubry, A
    Chartier, P
    BIT, 1998, 38 (04): : 802 - 806
  • [4] Symplectic Partitioned Runge-Kutta And Symplectic Runge-Kutta Methods Generated By 2-Stage RadauIA Method
    Tan, Jiabo
    ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2, 2014, 444-445 : 633 - 636
  • [5] Order properties and construction of symplectic Runge-Kutta methods
    Li, SF
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2000, 18 (06) : 645 - 656
  • [6] ORDER PROPERTIES AND CONSTRUCTION OF SYMPLECTIC RUNGE-KUTTA METHODS
    Shou-fu Li (Institute for Computational and Applied Mathematics
    Journal of Computational Mathematics, 2000, (06) : 645 - 656
  • [7] Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods Derived by Partitioned Runge-Kutta Methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1181 - 1185
  • [8] Construction of Exponentially Fitted Symplectic Runge-Kutta-Nystrom Methods from Partitioned Runge-Kutta Methods
    Monovasilis, Th
    Kalogiratou, Z.
    Simos, T. E.
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 843 - 849
  • [9] Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems
    Jay, L
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) : 368 - 387
  • [10] Symplectic Runge-Kutta methods for the Kalman-Bucy filter
    Hu, Guang-Da
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2008, 25 (02) : 173 - 183