Chaos and thermalization in a dynamical model of two interacting particles

被引:44
作者
Borgonovi, F
Guarneri, I
Izrailev, FM
Casati, G
机构
[1] Univ Cattolica, Dipartimento Matemat & Fis, I-25121 Brescia, Italy
[2] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy
[3] Ist Nazl Fis Mat, Unita Milano, I-20130 Milan, Italy
[4] Univ Milan, Int Ctr Study Dynam Syst, Sede Como, I-22100 Como, Italy
[5] Budker Inst Nucl Phys, Novosibirsk 630090, Russia
[6] Univ Autonoma Puebla, Inst Fis, Puebla 72570, Mexico
[7] Ist Nazl Fis Nucl, Sez Milano, I-20133 Milan, Italy
关键词
D O I
10.1016/S0375-9601(98)00545-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The thermal properties of a quantum dynamical model of two interacting spins, with chaotic and regular components, are investigated using a finite two-particles symmetrized basis. Chaotic eigenstates give rise to an equilibrium occupation number distribution in close agreement with the Bose-Einstein distribution despite the small number of particles (n = 2). However, the corresponding temperature differs from that derived from the standard canonical ensemble. On the other side, an acceptable agreement with the latter is restored by artificially randomizing the model. Different definitions of temperature are then discussed and compared. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:140 / 144
页数:5
相关论文
共 22 条
[1]   2-BODY RANDOM HAMILTONIAN AND LEVEL DENSITY [J].
BOHIGAS, O ;
FLORES, J .
PHYSICS LETTERS B, 1971, B 34 (04) :261-&
[2]   Quantum-classical correspondence in energy space: Two interacting spin particles [J].
Borgonovi, F ;
Guarneri, I ;
Izrailev, FM .
PHYSICAL REVIEW E, 1998, 57 (05) :5291-5302
[3]   BAND-RANDOM-MATRIX MODEL FOR QUANTUM LOCALIZATION IN CONSERVATIVE-SYSTEMS [J].
CASATI, G ;
CHIRIKOV, BV ;
GUARNERI, I ;
IZRAILEV, FM .
PHYSICAL REVIEW E, 1993, 48 (03) :R1613-R1616
[4]   Quantum ergodicity and localization in conservative systems: The Wigner band random matrix model [J].
Casati, G ;
Chirikov, BV ;
Guarneri, I ;
Izrailev, FM .
PHYSICS LETTERS A, 1996, 223 (06) :430-435
[5]  
CASATI G, CONDMAT9801063
[6]   ERGODICITY AND MIXING IN QUANTUM-THEORY .2. [J].
FEINGOLD, M ;
MOISEYEV, N ;
PERES, A .
PHYSICAL REVIEW A, 1984, 30 (01) :509-512
[7]   REGULAR AND CHAOTIC MOTION OF COUPLED ROTATORS [J].
FEINGOLD, M ;
PERES, A .
PHYSICA D, 1983, 9 (03) :433-438
[8]   SEMICLASSICAL STRUCTURE OF HAMILTONIANS [J].
FEINGOLD, M ;
LEITNER, DM ;
PIRO, O .
PHYSICAL REVIEW A, 1989, 39 (12) :6507-6514
[9]  
FEINGOLD M, 1991, J PHYS A, V24, P1751
[10]   Towards a statistical theory of finite Fermi systems and compound states: Random two-body interaction approach [J].
Flambaum, VV ;
Izrailev, FM ;
Casati, G .
PHYSICAL REVIEW E, 1996, 54 (02) :2136-2139