Synchronization between two different noise-perturbed chaotic systems with unknown parameters

被引:3
作者
Jia, Fei-Lei [1 ]
Xu, Wei [1 ]
Du, Lin [1 ]
机构
[1] NW Polytech Univ, Dept Appl Math, Xian 710072, Peoples R China
来源
CHINESE PHYSICS | 2007年 / 16卷 / 11期
关键词
synchronization; adaptive control; noise perturbation; unknown parameters;
D O I
10.1088/1009-1963/16/11/018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, a general method of synchronizing noise-perturbed chaotic systems with unknown parameters is proposed. Based on the LaSalle-type invariance principle for stochastic differential equations and by employing a combination of feedback control and adaptive control, some sufficient conditions of chaos synchronization between these noise-perturbed systems with unknown parameters are established. The model used in the research is the chaotic system, but the method is also applicable to the hyperchaotic systems. Unified system and noise-perturbed Rossler system, hyperchaotic Chen system and noise-perturbed hyperchaotic Rossler system are taken for illustrative examples to demonstrate this technique.
引用
收藏
页码:3249 / 3255
页数:7
相关论文
共 24 条
[1]   Complex dynamics and phase synchronization in spatially extended ecological systems [J].
Blasius, B ;
Huppert, A ;
Stone, L .
NATURE, 1999, 399 (6734) :354-359
[2]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[3]  
CHEN JF, 2003, CHINESE PHYS, V12, P18
[4]  
Chen SH, 2002, CHINESE PHYS, V11, P543, DOI 10.1088/1009-1963/11/6/305
[5]  
CUOMO KM, 1993, PHYS REV LETT, V65, P71
[6]   Understanding synchronization induced by "common noise" [J].
Guan, SG ;
Lai, YC ;
Lai, CH ;
Gong, XF .
PHYSICS LETTERS A, 2006, 353 (01) :30-33
[7]   DEPHASING AND BURSTING IN COUPLED NEURAL OSCILLATORS [J].
HAN, SK ;
KURRER, C ;
KURAMOTO, Y .
PHYSICAL REVIEW LETTERS, 1995, 75 (17) :3190-3193
[8]  
Huang DB, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.067201
[9]   Conditions for impulsive synchronization of chaotic and hyperchaotic system [J].
Itoh, M ;
Yang, T ;
Chua, LO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (02) :551-560
[10]   Robust synchronization of chaotic non-autonomous systems using adaptive-feedback control [J].
Lei, Youming ;
Xu, Wei ;
Shen, Jianwei .
CHAOS SOLITONS & FRACTALS, 2007, 31 (02) :371-379