Introduction to a large random matrix theory

被引:3
作者
Najim, Jamal [1 ,2 ]
机构
[1] Univ Paris Est Marne La Vallee, Champs Sur Marne, France
[2] CNRS, Lab Informat Gaspart Monge, Champs Sur Marne, France
关键词
random matrix theory; LARGEST EIGENVALUE;
D O I
10.3166/TS.33.161-222
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article provides an introduction to large random matrix theory, aimed at a nonspecialist audience. We state and prove Marcenko-Pastur's theorem which describes the asymptotic spectrum of a large covariance matrix. We introduce the Stieltjes transform and associated techniques; we also introduce specific techniques for matrices with gaussian entries, which in particular provide a short proof for the isotropic Marcenko-Pastur theorem. We also present covariance matrices with general population covariance matrices and spiked models. We finally give an application of the theory to wireless communication.
引用
收藏
页码:161 / 222
页数:62
相关论文
共 34 条
[1]  
[Anonymous], 1977, TRANSLATIONS MATH MO
[2]  
[Anonymous], 2013, Matrix Analysis
[3]  
[Anonymous], CAMBRIDGE STUDIES AD
[4]  
[Anonymous], 2012, GRADUATE STUDIES MAT, DOI DOI 10.1090/GSM/132.MR2906465
[5]  
[Anonymous], 2006, LECT COMBINATORICS F, DOI DOI 10.1017/CBO9780511735127
[6]  
[Anonymous], 2013, Concentration Inequali-ties: A Nonasymptotic Theory of Independence, DOI DOI 10.1093/ACPROF:OSO/9780199535255.001.0001
[7]  
Bai Z, 2010, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4419-0661-8
[8]   Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices [J].
Baik, J ;
Ben Arous, G ;
Péché, S .
ANNALS OF PROBABILITY, 2005, 33 (05) :1643-1697
[9]   Eigenvalues of large sample covariance matrices of spiked population models [J].
Baik, Jinho ;
Silverstein, Jack W. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (06) :1382-1408
[10]   The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices [J].
Benaych-Georges, Florent ;
Nadakuditi, Raj Rao .
ADVANCES IN MATHEMATICS, 2011, 227 (01) :494-521