Achieving ultra-high strength in a face-centered-cubic FeCrCoNi high entropy alloy through dense nanotwins bundles structure prepared by cryo-rolling

被引:11
作者
Zeng, Longfei [1 ,2 ]
Zeng, Luming [1 ]
Gao, Rui [3 ]
You, Chaoping [1 ]
Liu, Baixiong [1 ]
机构
[1] Jiangxi Univ Sci & Technol, Fac Mat Met & Chem, Ganzhou 341000, Peoples R China
[2] Jiangxi Adv Copper Ind Res Inst, Ying Tan 335000, Peoples R China
[3] Xi An Jiao Tong Univ, Dept Nucl Sci & Technol, Xian 710049, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
High entropy alloys; Nano-scale twin bundles; Ultra-high tensile strength; Cryo-rolling; Shear bands; HIGH ELECTRICAL-CONDUCTIVITY; MECHANICAL-PROPERTIES; DEFORMATION; TEMPERATURE; GRAINS; COPPER;
D O I
10.1016/j.intermet.2022.107638
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High/medium-entropy alloys (HEAs/MEAs) with simple single-phase face-centered-cubic (fcc) structures have exceptional tensile ductility and outstanding toughness, but their room-temperature strengths are moderate. Here we introduced a mixed nanostructure, composed of high density nano-scale twins in the form of bundles and nanograins in shear bands, in a single-phase fcc FeCrCoNi HEA by means of cryo-rolling at liquid nitrogen temperature (LNT), which result in a substantial enhancement of tensile strength. The as-prepared nano-structured FeCrCoNi HEA exhibits an ultra-high ultimate tensile strength of similar to 1.8 GPa, an elongation-to-failure of similar to 10%. The ultra-high strength originates mainly from the effective blockage of dislocation motion by the ultra-high density of internal twin and grain boundaries. The microstructural evolution and formation mechanism of the mixed nanostructure in FeCrCoNi HEA were investigated in detail by transmission electron microscopic characterization.
引用
收藏
页数:7
相关论文
共 34 条
  • [1] Enhanced mechanical properties in a high-manganese austenitic steel through formation of nano grains, nanotwinned austenite grains, nano carbides and TRIP
    Behjati, P.
    Kermanpur, A.
    Najafizadeh, A.
    Baghbadorani, H. Samaei
    Jung, J. -G.
    Lee, Y. -K.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 610 : 273 - 278
  • [2] High strength, epitaxial nanotwinned Ag films
    Bufford, D.
    Wang, H.
    Zhang, X.
    [J]. ACTA MATERIALIA, 2011, 59 (01) : 93 - 101
  • [3] Microstructural development in equiatomic multicomponent alloys
    Cantor, B
    Chang, ITH
    Knight, P
    Vincent, AJB
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 : 213 - 218
  • [4] Enabling Ultrahigh Plastic Flow and Work Hardening in Twinned Gold Nanowires
    Deng, Chuang
    Sansoz, Frederic
    [J]. NANO LETTERS, 2009, 9 (04) : 1517 - 1522
  • [5] Ultrastrong nanotwinned pure nickel with extremely fine twin thickness
    Duan, Fenghui
    Lin, Yan
    Pan, Jie
    Zhao, Lei
    Guo, Qiang
    Zhang, Di
    Li, Yi
    [J]. SCIENCE ADVANCES, 2021, 7 (27)
  • [6] Tensile properties of high- and medium-entropy alloys
    Gali, A.
    George, E. P.
    [J]. INTERMETALLICS, 2013, 39 : 74 - 78
  • [7] High-entropy alloys
    George, Easo P.
    Raabe, Dierk
    Ritchie, Robert O.
    [J]. NATURE REVIEWS MATERIALS, 2019, 4 (08) : 515 - 534
  • [8] Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures
    Gludovatz, Bernd
    Hohenwarter, Anton
    Thurston, Keli V. S.
    Bei, Hongbin
    Wu, Zhenggang
    George, Easo P.
    Ritchie, Robert O.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [9] A fracture-resistant high-entropy alloy for cryogenic applications
    Gludovatz, Bernd
    Hohenwarter, Anton
    Catoor, Dhiraj
    Chang, Edwin H.
    George, Easo P.
    Ritchie, Robert O.
    [J]. SCIENCE, 2014, 345 (6201) : 1153 - 1158
  • [10] Nucleation and thickening of shear bands in nano-scale twin/matrix lamellae of a Cu-Al alloy processed by dynamic plastic deformation
    Hong, C. S.
    Tao, N. R.
    Huang, X.
    Lu, K.
    [J]. ACTA MATERIALIA, 2010, 58 (08) : 3103 - 3116