Constructing the Exact Voronoi Diagram of Arbitrary Lines in Three-Dimensional Space with Fast Point-Location

被引:0
作者
Hemmer, Michael [1 ]
Setter, Ophir [2 ]
Halperin, Dan [2 ]
机构
[1] INRIA Sophia Antipolis, Sophia Antipolis, France
[2] Tel Aviv Univ, Tel Aviv, Israel
来源
ALGORITHMS-ESA 2010 | 2010年 / 6346卷
基金
以色列科学基金会;
关键词
Voronoi Diagrams; Point Location; Lower Envelopes; Robust Geometric Computing; Computational Geometry; CGAL; LOWER ENVELOPES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce a new, efficient, and complete algorithm, and its exact implementation, to compute the Voronoi diagram of lines in space. This is a major milestone towards the robust construction of the Voronoi diagram of polyhedra. As we follow the exact geometric-computation paradigm, it is guaranteed that we always compute the mathematically correct result. The algorithm is complete in the sense that it can handle all configurations, in particular all degenerate ones. The algorithm requires O(n(3+epsilon)) time and space, where n is the number of lines. The Voronoi diagram is represented by a data structure that permits answering point-location queries in O(log(2) n) expected time. The implementation employs the CGAL packages for constructing arrangements and lower envelopes together with advanced algebraic tools.
引用
收藏
页码:398 / +
页数:3
相关论文
共 36 条
  • [1] The overlay of lower envelopes and its applications
    Agarwal, PK
    Schwarzkopf, O
    Sharir, M
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1996, 15 (01) : 1 - 13
  • [2] [Anonymous], INT S VOR DIAGR SCI
  • [3] [Anonymous], 1999, Modern Computer Algebra
  • [4] Aurenhammer F, 2000, HANDBOOK OF COMPUTATIONAL GEOMETRY, P201, DOI 10.1016/B978-044482537-7/50006-1
  • [5] Austern MatthewH., 1999, AW PRO COMP, V1st
  • [6] Berberich E., 2005, P 21 ANN S COMP GEOM, P99
  • [7] Berberich E., 2010, 7274 INRIA
  • [8] Blum Harry., 1967, A transformation for extracting new descriptors of shape, V43
  • [9] Boissonnat JD, 2005, LECT NOTES COMPUT SC, V3669, P367
  • [10] Boissonnat Jean-Daniel, 2006, Effective computational geometry for curves and surfaces