Global Robust Finite Time Control for A Class of Uncertain Second-order Nonlinear Systems

被引:0
作者
Zhang Fengdi [1 ,2 ]
Sheng Yongzhi [1 ,2 ]
Liu Xiangdong [1 ,2 ]
Zhao Yao [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] State Key Lab Intelligent Control & Decis Complex, Beijing 100081, Peoples R China
来源
2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION | 2015年
关键词
nonlinear systems; finite time control; sliding mode control; global robustness; SLIDING-MODE CONTROL; CONTROL DESIGN; GUIDANCE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For the tracking control of a class of uncertain second order nonlinear systems, this paper proposes a robust global finite time control strategy. This control strategy consists of two parts: firstly, a time-varying sliding mode controller is designed to make the tracking errors to zero at a desired finite time t(r); then, in the succeeding time t> t(r), another nonsingular terminal sliding mode controller is used to make the tracking errors stay at zero. The algorithm has the following advantages: 1) the tracking error convergence time can be set in advance; 2) error convergence rate can be adjusted by changing the value of a parameter; 3) global robustness is guaranteed for parameter uncertainty and external disturbance. Numerical results demonstrate the usefulness of the proposed control strategy.
引用
收藏
页码:684 / 689
页数:6
相关论文
共 50 条
[31]   Finite Time Converging Input Observers for Nonlinear Second-order Systems [J].
Moreno, Jaime A. ;
Dochain, D. .
2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, :3554-3559
[32]   Nonsingular Terminal Sliding Mode Control of Uncertain Second-Order Nonlinear Systems [J].
Tran, Minh-Duc ;
Kang, Hee-Jun .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
[33]   Terminal sliding mode-control of second-order nonlinear uncertain systems [J].
Park, KB ;
Tsuji, T .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1999, 9 (11) :769-780
[34]   Adaptive Finite-Time Optimal Formation Control for Second-Order Nonlinear Multiagent Systems [J].
Zhang, Jiaxin ;
Fu, Yue ;
Fu, Jun .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (10) :6132-6144
[35]   Robust, near time-optimal control of nonlinear second order systems with model uncertainty [J].
You, KH ;
Lee, EB .
PROCEEDINGS OF THE 2000 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 2000, :232-236
[36]   Robust H∞ finite-time stability control of a class of nonlinear systems [J].
Liu, Haitao ;
Tian, Xuehong ;
Wang, Gui ;
Zhang, Tie .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) :5111-5122
[37]   Fast Finite-time Consensus of A Class of High-order Uncertain Nonlinear Systems [J].
Khoo, Suiyang ;
Hieu Minh Trinh ;
Man, Zhihong ;
Shen, Weixiang .
ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 4, 2010, :334-+
[38]   Finite-time and fixed-time sliding mode control for second-order nonlinear multiagent systems with external disturbances [J].
Li, Xue ;
Yu, Zhiyong ;
Huang, Da ;
Jiang, Haijun .
NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2022, 27 (06) :1091-1109
[39]   Global robust optimal sliding mode control for uncertain affine nonlinear systems [J].
Pang Haiping Chen Xia Collof Automation and Electronic EngineeringQingdao Univof Science and Technology Qingdao PRChina .
Journal of Systems Engineering and Electronics, 2009, 20 (04) :838-843
[40]   Global robust optimal sliding mode control for uncertain affine nonlinear systems [J].
Pang Haiping ;
Chen Xia .
JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2009, 20 (04) :838-843