Global Robust Finite Time Control for A Class of Uncertain Second-order Nonlinear Systems

被引:0
作者
Zhang Fengdi [1 ,2 ]
Sheng Yongzhi [1 ,2 ]
Liu Xiangdong [1 ,2 ]
Zhao Yao [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] State Key Lab Intelligent Control & Decis Complex, Beijing 100081, Peoples R China
来源
2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION | 2015年
关键词
nonlinear systems; finite time control; sliding mode control; global robustness; SLIDING-MODE CONTROL; CONTROL DESIGN; GUIDANCE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For the tracking control of a class of uncertain second order nonlinear systems, this paper proposes a robust global finite time control strategy. This control strategy consists of two parts: firstly, a time-varying sliding mode controller is designed to make the tracking errors to zero at a desired finite time t(r); then, in the succeeding time t> t(r), another nonsingular terminal sliding mode controller is used to make the tracking errors stay at zero. The algorithm has the following advantages: 1) the tracking error convergence time can be set in advance; 2) error convergence rate can be adjusted by changing the value of a parameter; 3) global robustness is guaranteed for parameter uncertainty and external disturbance. Numerical results demonstrate the usefulness of the proposed control strategy.
引用
收藏
页码:684 / 689
页数:6
相关论文
共 50 条
[21]   Improved UDE and LSO for a Class of Uncertain Second-Order Nonlinear Systems Without Velocity Measurements [J].
Zhang, Xinyu ;
Li, Hui ;
Zhu, Bo ;
Zhu, Yang .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (07) :4076-4092
[22]   Stability analysis of fuzzy PD control system for a class of second-order uncertain nonlinear processes [J].
Pok, YM ;
Xu, JX ;
Hang, CC .
ARTIFICIAL INTELLIGENCE IN REAL-TIME CONTROL 1997, 1998, :23-28
[23]   Finite-time output feedback control for a class of second-order nonlinear systems with application to DC-DC buck converters [J].
Du, Haibo ;
Cheng, Yingying ;
He, Yigang ;
Jia, Ruting .
NONLINEAR DYNAMICS, 2014, 78 (03) :2021-2030
[24]   Prescribed Performance Adaptive Tracking Control With Small Overshoot for a Class of Uncertain Second-Order Nonlinear Systems [J].
Wang, Xidong ;
Li, Zhan ;
He, Zhen ;
Basin, Michael V. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (09) :3834-3838
[25]   Robust LQR Tracking Control for a Class of Affine Nonlinear Uncertain Systems [J].
Pang, Hai-Ping ;
Yang, Qing .
PROCEEDINGS OF THE 2012 24TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2012, :1197-1202
[26]   Event-Triggered Global Finite-Time Control for a Class of Uncertain Nonlinear Systems [J].
Zhang, Cui-Hua ;
Yang, Guang-Hong .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (03) :1340-1347
[27]   Sliding mode control with a second-order switching law for a class of nonlinear fractional order systems [J].
Yuquan Chen ;
Yiheng Wei ;
Hua Zhong ;
Yong Wang .
Nonlinear Dynamics, 2016, 85 :633-643
[28]   Finite-time tracking control for a class of high-order nonlinear systems and its applications [J].
Cheng, Yingying ;
Du, Haibo ;
He, Yigang ;
Jia, Ruting .
NONLINEAR DYNAMICS, 2014, 76 (02) :1133-1140
[29]   Sliding mode control with a second-order switching law for a class of nonlinear fractional order systems [J].
Chen, Yuquan ;
Wei, Yiheng ;
Zhong, Hua ;
Wang, Yong .
NONLINEAR DYNAMICS, 2016, 85 (01) :633-643
[30]   SYNCHRONIZATION OF A CLASS OF SECOND-ORDER NONLINEAR SYSTEMS [J].
Mijolaro, A. P. ;
Aberto, L. F. C. ;
Bretas, N. G. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (11) :3461-3471