Gravitational magnetic curves on 3D Riemannian manifolds

被引:74
作者
Korpinar, Talat [1 ]
Demirkol, Ridvan Cem [1 ]
机构
[1] Mus Alparslan Univ, Math Dept, Guzeltepe Campus, TR-49100 Mus, Turkey
关键词
Magnetic field; gravitational force; G-magnetic curve; energy; magnetic force; uniform motion; Riemannian manifold; BIHARMONIC PARTICLES; INEXTENSIBLE FLOWS; ENERGY; FIELDS; MOTION;
D O I
10.1142/S0219887818501840
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study a special type of magnetic trajectories associated with a magnetic field B defined on a 3D Riemannian manifold. First, we assume that we have a moving charged particle which is supposed to be under the action of a gravitational force G in the magnetic field B on the 3D Riemannian manifold. Then, we determine trajectories of the charged particle associated with the magnetic field B and we define gravitational magnetic curves (G-magnetic curves) of the magnetic vector field B on the 3D Riemannian manifold. Finally, we investigate some geometrical and physical features of the moving charged particle corresponding to the G-magnetic curve. Namely, we compute the energy, magnetic force, and uniformity of the G-magnetic curve.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] 3D dose computation algorithms
    Knoos, T.
    9TH INTERNATIONAL CONFERENCE ON 3D RADIATION DOSIMETRY, 2017, 847
  • [32] The geodetic precession as a 3D Schouten precession and a gravitational Thomas precession
    de Haas, E. P. J.
    CANADIAN JOURNAL OF PHYSICS, 2014, 92 (10) : 1082 - 1093
  • [33] 3D navigation for endoscope by magnetic field
    Liu, XY
    Chen, X
    Lin, D
    Zhang, QH
    Tamura, S
    DATA MINING AND APPLICATIONS, 2001, 4556 : 25 - 28
  • [34] 3D motion in magnetic actuator modelling
    Wendling, P
    Lombard, P
    Ruiz, R
    Guérin, C
    Leconte, V
    Bataille, C
    Belliard, SC
    ICEMS 2005: Proceedings of the Eighth International Conference on Electrical Machines and Systems, Vols 1-3, 2005, : 626 - 629
  • [35] LLINKING CURVES, SUTURED MANIFOLDS AND THE AMBROSE CONJECTURE FOR GENERIC 3-MANIFOLDS
    Angulo, Pablo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (01) : 1 - 41
  • [36] From 3D hydrodynamic simulations of common-envelope interaction to gravitational-wave mergers
    Moreno, Melvin M.
    Schneider, Fabian R. N.
    Roepke, Friedrich K.
    Ohlmann, Sebastian T.
    Pakmor, Ruediger
    Podsiadlowski, Philipp
    Sand, Christian
    ASTRONOMY & ASTROPHYSICS, 2022, 667
  • [37] L2 d Properties of Levy Generators on Compact Riemannian Manifolds
    Applebaum, David
    Brockway, Rosemary Shewell
    JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (02) : 1029 - 1042
  • [38] KILLING MAGNETIC TRAJECTORIES IN 3D EGOROV SPACES
    Iqbal Z.
    Journal of Mathematical Sciences, 2023, 271 (3) : 322 - 340
  • [39] MagicFinger: 3D Magnetic Fingerprints for Indoor Location
    Carrillo, Daniel
    Moreno, Victoria
    Ubeda, Benito
    Skarmeta, Antonio F.
    SENSORS, 2015, 15 (07) : 17168 - 17194
  • [40] On the quasi-isometric and bi-Lipschitz classification of 3D Riemannian Lie groups
    Katrin Fässler
    Enrico Le Donne
    Geometriae Dedicata, 2021, 210 : 27 - 42